Dijkstra Goes Random

Weakest-Precondition-Reasoning on Probabilistic Programs

Joost-Pieter Katoen

RWTH

The 20th KeY Symposium, July 2024

%

Joost-Pieter Katoen Dijkstra Goes Random 1/1

Motivation

Probabilistic programs

Programs with random assignments and conditioning

{w:=023}[5/7] {w:=173;
if (w = 0) { ¢ := poisson(6) }
else { ¢ := poisson(2) };
observe (c = 5)

Pm\‘.)c\\o'\\? siea ‘O(‘anc\-\\'-\a_

P(?/O:O}: ‘§. Pr .2\3:1}':%

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Probabilistic programs

random assignments

{w:=023}[5/7] {w:=113;
if (w = 0) { ¢ := poisson(6)
else { ¢ := poisson(2) };
observe (c = 5)

and conditioning

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]

Probabilistic Programs. Verified. Push Button.

Joost-Pieter Katoen

Motivation

Probabilistic programs

Programs with random assignments an

{w:=023}[5/7] {w:=173;

if (w = 0) { ¢ := poisson(6) }
else { ¢ := poisson(2) };
observe (c = 5)

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]

Probabilistic Programs. Verified. Push Button.

Joost-Pieter Katoen

Probabilistic programs

Programs with random assignments and conditioning

{w:=023}[5/7] {w:=173;
if (w = 0) { ¢ := poisson(6) }
else { ¢ := poisson(2) };
observe (c = 5)

They encode:
P randomised algorithms
P probabilistic graphical models beyond Bayes' networks
P controllers for autonomous systems
P security mechanisms

"Probabilistic programming aims to make

probabilistic modeling and machine learning accessible to the programmer."1

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

“ Reaol ’ Cxo «np\e.s

before 2018

since 2018

the UN diagnoses seismic events
using probabilistic programs

[Arora et al, Bull. Seism. 2017]

Joost-Pieter Katoen tic Programs. Verified. Push Button.

Training

L4 2 e) Data
Real Exoamples Progeam => SeeHE b Scones = Simulaor < G
Data > —
T Failure o l SqueezeDet

Cases

SCENIC generates more effective training sets
[Fremont et al, Mach. Learn. 2023]

since 2018

the UN diagnoses seismic events
using probabilistic programs

[Arora et al, Bull. Seism. 2017]

Joost-Pieter Katoen tic Programs. Verified. Push Button.

Training
Scenic (e Data
Progeam =P e, P Seenes = Simulator . System
est
T Data >
Failure | o l SqueezeDet

Cases

SCENIC generates more effective training sets
[Fremont et al, Mach. Learn. 2023]

since 2018 33@3@ §
T MY f
ElcitiElR) g
Slov/oB oy £

STAN, PyMC,

humans
Edward, Pyro, \‘__JJ

ProbLog, WebPPL

the UN diagnoses seismic events

rograms .
using probabilistic programs prog neural network:

[Arora et al, Bull. Seism. 2017] [Lake et al, Science 2015]

Joost-Pieter Katoen Probabilistic Programs. V. d. Push Button.

Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

X :=1;
while (x > 0) {
x = x+2 [1/2] x := x-1

}
Vo
© 4
\ \ \ \ \ \ 1
© "L«//‘ r2 T b
2

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

X :=1;
while (x > 0) {

x = x+2 [1/2] x := x-1
}

If not, what is its probability to diverge?

Joost-Pieter Katoen

Probabilistic Programs. Verified. Push Button.

Even if all loops are bounded [Flajolet et al, 2009]

x := geometric(1/4);
y := geometric(1/4);
t = xt+ty+l [5/9] t := x+y;

r :=1;
for i in 1..3 {
s :=0
for j in 1..2t {
s := s+1 [1/2] skip
}
r := (s == t)
}

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Even if all loops are bounded [Flajolet et al, 2009]

x := geometric(1/4);
y := geometric(1/4);
t = xt+ty+l [5/9] t := x+y;

r :=1;
for i in 1..3 {
s :=0
for j in 1..2t {
s := s+1 [1/2] skip
}
r := (s == t)
}

What is the probability that r equals one on termination?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Positive AST

int x := 1;

bool c := true;

while (c) {
c := false [0.5] c := true;
X 1= 2%x

}

Finite expected termination time?
aka: is this program positive AST?

Probabilistic Programs. Verified. Push Button.

Joost-Pieter Katoen

Positive AST

int x := 1;
bool c := true;
while (c) { while (x > 0) {
c := false [0.5] c := true; x = x-1

X 1= 2%x T

}
Finite termination time!
Finite expected termination time? PAST.

aka: is this program positive AST?

Probabilistic Programs. Verified. Push Button.

Joost-Pieter Katoen

Motivation

Positive AST

int x := 1;
bool c := true;
while (c) { ° while (x > 0) {
c := false [0.5] c := true; s x = x-1

X 1= 2%x T

}
Finite termination time!
Finite expected termination time? PAST.

aka: is this program positive AST?

Joost-Pieter Katoen

Expected runtime of these programs in sequence?

Probabilistic Programs. Verified. Push Button.

Motivation

Positive AST

int x := 1;
bool c := true;
while (c) { ° while (x > 0) {
c := false [0.5] c := true; x = x-1

X 1= 2%x T

}
Finite termination time!
Finite expected termination time? PAST.

aka: is this program positive AST?

Expected runtime of these programs in sequence? (00)

PasT (¢) A~ PasT(Q) >‘é PasT (P59)

Probabilistic Programs. Verified. Push Button.

Joost-Pieter Katoen

Our objective

A powerful, simple proof calculus for probabilistic programs.
At the source code level.

No “descend” into the underlying probabilistic model.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Our objective

A powerful, simple proof calculus for probabilistic programs.
At the source code level.

No “descend” into the underlying probabilistic model.

Push automation as much as we can.

This is a true challenge: undecidability!

Typically “more undecidable” than deterministic programs

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Motivation

Probabilistic programs are “more undecidable”

3

RE

COF

P

UH

I

Ay

Ay

VY

COF

M

4

x|

Tuw\'\as)S wnNers oL

/ sn‘,\af\a. p'B\em

coRE

arithmetic hierarchy

Joost-Pieter Katoen

Probabilistic Programs. Verified. Push Button.

Motivation

Probabilistic programs are “more undecidable”

AST for one input
is as hard as

the halting problem for all inputs

arithmetic hierarchy

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Probabilistic programs are “more undecidable”

AST for one input
is as hard as
the halting problem for all inputs
is as hard as

computing expected outcomes

arithmetic hierarchy

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Probabilistic programs are “more undecidable”

AST for one input

is as hard as
> the halting problem for all inputs
is as hard as

computing expected outcomes

but

deciding finite expected runtime?

Ay is “even more undecidable”

[Kaminski, K., MFCS 2015]
arithmetic hierarchy

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Roadmap of this talk

Part 1

P Probabilistic weakest preconditions

Part 2

P Proof rules for probabilistic loops

Part 3

P Relative completeness and automation

Joost-Pieter Katoen

Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

“Dijkstra’s weakest preconditions go random”

WEAKEST PRE-EXPECTATIONS

Dexter Kozen, Annabelle Mclver, and Carroll Morgan

Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

From predicates to quantities

P Let program P be:

taves el vo\ae

x := x+5 [4/5] x := 10 oF %

The expected value o@on P’s termination is:

4 1 4x
g(X+5)+§10 = ?4‘6

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

From predicates to quantities

P Let program P be:
x := x+5 [4/5] x := 10

The expected value of x on P's termination is:

4 1
g(X+5)+§10 = ?4‘6

P The probability that x = 10 on P’s termination is:

1
[x+5=10] + =
lverson brackets

ol &~

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Expectations

The set of expectations® (read: random variables):

E =<f]|f: S, - Ryou{oo}

states

%+ expectations in probability theory.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Expectations

The set of expectations® (read: random variables):

E=<f]|f: ﬁ > Rygu{oo}

states

Examples: [x = 5] 4?X+6 4'[X=5¢ 1 x2+\/(y+1)...

%+ expectations in probability theory.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Expectations

The set of expectations® (read: random variables):

E=<f]|f: ﬁ > Rygu{oo}

states

Examples: [x = 5] 4?X+6 4'[X=5¢ 1 x2+\/(y+1)...

(E,E) is a complete lattice where f E g if and only if Vs € S. f(s) < g(s)

expectations are the quantitative analogue of predicates

%+ expectations in probability theory.

Joost-Pieter Katoen

Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Weakest pre-expectations

For program P, let wp[[P] : E - EE an expectation transformer

g = wp[[P]I(f) is P’'s weakest pre-expectation w.r.t. post-expectation f iff

the expected value of f after executing P on input s equals g(s)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Weakest pre-expectations
For program P, let wp[[P] : E - EE an expectation transformer

g = wp[[P]I(f) is P’'s weakest pre-expectation w.r.t. post-expectation f iff

the expected value of f after executing P on input s equals g(s)

Examples:
For P:: x := x+5 [4/5] x := 10, we have:

wpl PTI(x) = 4?X+6 and wp[P]([x =10]) = %

wp[[PTI([¢]) is the probability of predicate © on P’s termination

wp[[PT(1) is P’s termination probability

Probabilistic Programs. Verified. Push Button.

Joost-Pieter Katoen

What are probabilistic weakest preconditions? Semantically.

Kozen’s duality theorem
wp[[PT()(s) is the expected value of f after running P on input s

Let up be the distribution over P's final states when P starts in s.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Kozen’s duality theorem
wp[[PT()(s) is the expected value of f after running P on input s

Let up be the distribution over P's final states when P starts in s.

Then for post-expectation 7: wp[[P](f) Z wp(t
%—J
“backward” &Y_,
“forward”

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Kozen’s duality theorem
wp[[PT()(s) is the expected value of f after running P on input s

Let up be the distribution over P's final states when P starts in s.

Then for post-expectation 7: wp[[P](f)(s) = Z,uf;(t) - (t)
—_

“backward” &Y_,

“forward”

Pictorially:

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

oNer

~\\ poNcies

What are probabilistic weakest preconditions? Semantically.

How to obtain wp for a program?

Syntax probabilistic program P Semantics wp[[P]|(f)
skip sdeston T f
x:=E flx := E]
X As. [@ (v F(s[x = v])) dpse
P Q wp[P (wp[Q(f))

—

bodkmord s }

Joost-Pieter Katoen

Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

How to obtain wp for a program?

Syntax probabilistic program P Semantics wp[[P]|(f)
skip f
x:=E fx = E]
X As. [@ (v F(s[x = v])) dpse
P; Q wpll PT (wp[QT(f))
if (p) P else Q [e]- wpll PTI(F) + [~]- wpl Q1)
Plp]Q p - wpll PI(f) + (1-p) - wp[QT(f)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

How to obtain wp for a program?

Syntax probabilistic program P Semantics wp[[P]|(f)
skip £
x:i=E f[x := E]
X As. [@ (v F(s[x = v])) dpse
P; Q wpll PT (wp[QT(f))
if (p) P else Q [e]- wpl PI() + [~¢]- wpl Q1(f)
Plp]Q p - wpll PI(f) + (1-p) - wp[QT(f)
while () {P} Ifp X. (L] - wpl PTI(X)) + [-¢] - f)

loop characteristic function ®¢(X)

where Ifp is the least fixed point wrt. the ordering C on E.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Examples

1. Consider again program P:
|x := x+5 [4/5] x := 10 |

Fowe have: X+ S

ATPTR) = Sl = 60 + Lowpllx = 10T

_ 4 1 _ 4x
= 2+(x+5) + 5-10 = -t 6

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Examples

1. Consider again program P:
|x := x+5 [4/5] x := 10 |

For f = x, we have: R4S
wolPT(x) = Swpllx 1= 610 + Lwplx = 10](x)
_ 4 1 _ 4—X
= 2+(x+5) + 5-10 = -t 6

2. For program P (again) and(f =[x = 10], we have:

wpl P[x=10]) = § - wpllx i= x+5]([x=10]) + § - wpllx := 10]([x=10]
= §-[x+5=10]+ % -[10 = 10]
_ 4-[x=5]+1
- 5

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Loops

wpl[while (0){ P}](F) = Ifp X. ([e]- wpl PT(X) + [-¢]- 1)

« J

loop characteristic function ®¢(X)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Loops

wpl[while (0){ P}](F) = Ifp X. ([e]- wpl PT(X) + [-¢]- 1)

« J

loop characteristic function ®¢(X)

» Function ®; : E - E is Scott continuous on (E, E)

» By Kleene's fixed point theorem:|Ifp ®¢ = sup,ey 7(0)

» ®7(0) is 's expected value after n times running P, starting in 0

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Examples

X :=1;
while (x > 0) {

x +:= 2 [1/2] x -:

}

post-expectation: 1

Joost-Pieter Katoen

What are probabilistic weakest preconditions? Semantically.

= geometric(1/4);

= geometric(1/4);

X+y+1 [5/9] t = X+Y’
=1;

or i in 1..3 {

s :=0
for j in 1..2t {
s := s+1 [1/2] skip
}
r := (s == t)

Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Examples

x := geometric(1/4);
y := geometric(1/4);
weakest pre-expectation: % vos ;1<+y+1 (/9] & == xty;
r :=1;
X = 1, i i
H f 1..3
while (x > 0) { ors 1.=1n0 ¢
x +:=2 [1/2] x —:= 1 for j in 1..2t {
} s := s+1 [1/2] skip
post-expectation: 1 1}: = (s == t)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Examples

weakest pre-expectation:

X :=1;
while (x > 0) {

x +:= 2 [1/2] x -:

}

post-expectation: 1

Joost-Pieter Katoen

What are probabilistic weakest preconditions? Semantically.

x := geometric(1/4);
y := geometric(1/4);
t = x+y+1 [5/9] t :
r :=1;
for i in 1..3 {

s :=0

for j in 1..2t {

}
r := (s == t)
}

s := s+1 [1/2] skip

post-expectation: [r=1]

Probabilistic Programs. Verified. Push Button.

Examples

weakest pre-expectation:
X :=1;
while (x > 0) {
x +:=2 [1/2] x -:=
¥

post-expectation: 1

Joost-Pieter Katoen

V5-1

2

1

What are probabilistic weakest preconditions? Semantically.

weakest pre-expectation: (1)

us

x := geometric(1/4);
y := geometric(1/4);

t = xt+y+1 [5/9] t := x+y;
r :=1;
for i in 1..3 {

s :=0

for j in 1..2t {
s := s+1 [1/2] skip
}
r := (s == t)
}

post-expectation: [r=1]

Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Probabilistic weakest liberal preconditions
Restrict f to denote probabilities, i.e., f(s) < 1 for each state s

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Probabilistic weakest liberal preconditions

Restrict f to denote probabilities, i.e., f(s) < 1 for each state s
Loops under wlp:

wip[while (¢) { P }1(f) = ([e] - wlpl PT(X) + [-¢] -)

. J

loop characteristic function ®¢(X)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Probabilistic weakest liberal preconditions

Restrict f to denote probabilities, i.e., f(s) < 1 for each state s
Loops under wlp:

wip[while (¢){ P}]I(f) =

.

gfp X. ([]- wip[PT(X) + [-¢]- f)

J

loop characteristic function ®¢(X)

Relating weakest liberal preconditions to wp:

wip[P1(f) = wplPI(f) + (1 - wp[PI(1))

’I‘ 'T probability that P diverges
osl
?“\:‘ =\ cocvre ckwess
Correcness

Joost-Pieter Katoen

Probabilistic Programs. Verified. Push Button

What are probabilistic weakest preconditions? Semantically.

Probabilistic weakest liberal preconditions

Restrict f to denote probabilities, i.e., f(s) < 1 for each state s
Loops under wlp:

wip[while () { P}(f) = gfp X. ([v]- wip[PT(X) + [-¢]- f)

.

J

loop characteristic function ®¢(X)

Relating weakest liberal preconditions to wp:

wipl PII(f) = wplPI(f) + (1 -wp[PII(1))
probability that P diverges

If program P is AST:

wiplPT(f) = wp[PT(f) + (1 - wp[PI(1)) = wp[PI(f)
=1

Joost-Pieter Katoen

Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Bayesian learning by example
{w:=023}0/7T1{w:=113%;
if (w = 0) { ¢ := poisson(6) }
else { ¢ := poisson(2) };
observe (c = 5)

Probabilistic Programs. Verified. Push Button.

Joost-Pieter Katoen

What are probabilistic weakest preconditions? Semantically.

Bayesian learning by example

{w:=023}0/7T1{w:=113%;
if (w = 0) { ¢ := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

~~ 1rF —~ 1rF
T 0.75 T 0.75
2 05 2 05
~ 0.25 ~ 0.25 777
0 1 0 1
" \/ "
prvec Fos\eﬁbr

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Bayesian learning by example

{w:=023}0/7T1{w:=113%;
if (w = 0) { ¢ := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

P

prior poske~or
~ 1rF ~ 1rF
T 0.75 T 0.75
3002'27 3002'2 b
&4 [] & 4

Probability mass is normalised by the probability of feasible runs

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]
The probability of feasible program runs:

wp[PT(1) = 1 - Pr{P violates an observation }

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]
The probability of feasible program runs:

wp[PT(1) = 1 - Pr{P violates an observation }

Weakest pre-expectation of observations:

wp[[observe o]|(f) = [¢]-

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]
The probability of feasible program runs:

wp[PT(1)) = 1 - Pr{P violates an observation }
¥

Weakest pre-expectation of observations:

wp[[observe o]|(f) = [¢]-

Normalisation:
wp[[PT(f)
wp[PII(1)

Joost-Pieter Katoen

Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]
The probability of feasible program runs:

wp[PT(1) = 1 - Pr{P violates an observation }

Weakest pre-expectation of observations:

wp[[observe o]|(f) = [¢]-

Normalisation:
wp[[PT(f)
wp[PII(1)

wp[P1(F)
wip[P](1)

Probabilistic Programs. Verified. Push Button.

Fine point: under possible program divergence:

Joost-Pieter Katoen

What are probabilistic weakest preconditions? Semantically.

Extensions of probabilistic wp

> ... for recursion [LICS 2016]
> ... for exact inference [TOPLAS 2018]
> ... for continuous distributions [SETTS 2019]
| for probabilistic separation logic [POPL 2019]
> ... for weighted programs [OOPSLA 2022]
> ... for expected runtime analysis [JACM 2018]
> ... for amortised runtime analysis [POPL 2023]

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

HOW TO TREAT LOOPS?

Joost-Pieter Katoen ili | 5 ified. Push Button.

Upper bounds
Recall:

wplwhile (0){ P}]1(F) = Ifp X. ([]- wpl PT(X) + [~] -)

.)

¢f'(X)

By Park’s lemma: for while(p){P} and expectations f and I

de(l) E I implies wp[while(p){P}](f) E /
——— I8 v J
“upper” invariant / Ifp &

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Upper bounds
Recall:

wplwhile (0){ P}]1(F) = Ifp X. ([]- wpl PT(X) + [~] -)

.)

¢f'(X)

By Park’s lemma: for while(p){P} and expectations f and I

de(l) E I implies wp[while(p){P}](f) E /
——— I8 v J
“upper” invariant / Ifp &

Example: while(c = 0) { x++ [p]l ¢ := 1}

I = x+[c=0]: % is an “upper”-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

(/ C ®() A side conditions) implies | E Ifp &

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

(/ C ®() A side conditions) implies | E Ifp &
-—
where the side conditions for the loop while(p){P} are:

1. the loop is PAST, and

2. forany sk, wp[PQ(|/(s)=1|)(s) < ¢ for some c € Ryg

conditional difference boundedness

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]
(I = ®¢(I) A side conditions) implies | E Ifp®
where the side conditions for the loop while(p){P} are:
1. the loop is PAST, and

2. forany sk, wp[PQ(|/(s)=1|)(s) < ¢ for some c € Ryg

conditional difference boundedness

Example. Program: while(c = 0){ x++ [p]c := 1} satisfies the conditions.

I = x+[c=0]- % is a “lower"-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

A proof rule for AST [Mclver, K. et al, POPL 2018]
Consider the loop while(p){ body} and let:
> V:S - Ryg with [-V] =[-¢p] V indicates termination
> p:R,o - (0,1] antitone probability
> d: R,y - R, antitone decrease

L XS‘& —_—— A{a,BSC\(\()

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

A proof rule for AST [Mclver, K. et al, POPL 2018]
Consider the loop while(p){ body} and let:
> V:S - Ryg with [-V] =[-¢p] V indicates termination
> p:R,o - (0,1] antitone probability
» d:R.y - R, antitone decrease
If:

(o) wellbodyI(V) < V

expected val‘ue of V does r;ot;l'écrease by an iteration
in
[p]-(po V) = As.wpl[body]|(|V = V(s) = d(V(s))])(s)

.

and

with at least prob. p, V decreases at least by d

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

A proof rule for AST [Mclver, K. et al, POPL 2018]
Consider the loop while(p){ body} and let:
> V:S - Ryg with [-V] =[-¢p] V indicates termination
> p:R,o - (0,1] antitone probability
> d: R,y - R, antitone decrease
If:

(o) wellbodyI(V) = V

expected value of V does not)iécrease by an iteration
Q

[p]-(pe V) = As.wpllbody][(|V = V(s) = d(V(s))]) (s)

.

and

with at least prob. p, V decreases at least by d

Then:
wp[[loop])(1) = 1 i.e., loopis AST

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Intuition

— loop iterations

Joost-Pieter Katoen istic Programs. Verified. Push Button.

Proof rules for probabilistic loops

Intuition

V(i)
V(LD
2
V(2)
-
=
L
/
=
/
4’ 1 1 1 1 1 1 N
I A OO

— loop iterations

tic Programs. Verified. Push Button.

Joost-Pieter Katoen

Intuition

,+ with prob. 2 p(V(l))

L 2

— loop iterations

Joost-Pieter Katoen istic Programs. Verified. Push Button.

Proof rules for probabilistic loops

Intuition

,+ with prob. 2 p(V(l))

V(i)

v\
=
v(2)
=
=
—
=
ez

0 1 I7 I8 |9 ’

%)
0
%)
1)
n
")
%)
0
%)
0

— loop iterations

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Intuition

,+ with prob. 2 p(V(l))

_. with prob. 2 p(V(4))

L 2

— loop iterations

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Intuition

Joost-Pieter Katoen

VIR

\n

<
X
~

TN

Proof rules for probabilistic loops
,+ with prob. 2 p(V(l))

d(V(1)) < d(v(4))
by antitone d

0

L 2

— loop iterations

Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

Intuition
p(V(1)) < p(V(4)
,+ with prob. 2 p(V(l)) --------
V(i)

VLN R N RIS TN I

\iZ) . with prob. 2 p(V(4))
I T
= d(V(1)) < d(V(4))

- by antitone d
! z 1 1 1 N
50 Isl |s7 ;8 Isg ?

— loop iterations

Joost-Pieter Katoen

Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

Intuition p(V(1)) < p(V(4)

. with prob. 2 p(v(1))

d(V(1)) < d(v(4))
by antitone d

L 2

- lodp iteratiopfs

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

Intuition p(V(1)) < p(V(4)

. with prob. 2 p(v(1))

d(V(1)) < d(v(4))
by antitone d

L 2

— loop iterations

The closer to termination, the more V' decreases and this becomes more likely

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Example: symmetric 1D random walk

while (x > 0) {
x :=x-1 [1/2] x := x+1
}

o 4/2 1 4)7, 2 4/1 2 4/2 4
T N N NNy

4/?- ’\/7. M 2

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Example: symmetric 1D random walk

while (x > 0) {
x :=x-1 [1/2] x := x+1
}

P Terminates almost surely

» Witness of almost-sure termination:

> V=x
» p=1/2 and
> d=1

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

Example: symmetric 1D random walk

while (x > 0) {
x :=x-1 [1/2] x := x+1
}

P Terminates almost surely Y . L AST
22 - \S no

» Witness of almost-sure termination:

> V=x
» p=1/2 and
> d=1

That's all you need to prove almost-sure termination!

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Example: fair-in-the-limit 1D random walk

while (x > 0) {
q = x/(2%x+1);
x-- [q] x++

s P £ T
[|

(o]
N i U e
2/3 3/{ L,/:,_ :/3 .

The closer to 0, the more unfair — drifting away from 0 — it gets

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Example: fair-in-the-limit 1D random walk

o M4 Y, hy o3 ko
TR NY i U o

/s s 4/3 Sl 7T

P The closer to 0, the more unfair — drifting away from 0 — it gets

P> Witness of almost-sure termination:
» V = H,, the x-th Harmonic number 1 +1/2 + ... + 1/«

Yn ifH,_1<v<H,
> d(v) =) " 0 , and
ITv=

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

So far we studied several proof rules to verify whether
a given expectation (or triple V, p, d) meets

constraints that imply upper/lower bounds on weakest pre-expectations

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

So far we studied several proof rules to verify whether
a given expectation (or triple V, p, d) meets

constraints that imply upper/lower bounds on weakest pre-expectations

This can be extended to expected runtimes too
Y

e.-3. ?mviv\a_ PasY

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Proof rules for probabilistic loops

So far we studied several proof rules to verify whether
a given expectation (or triple V, p, d) meets

constraints that imply upper/lower bounds on weakest pre-expectations

This can be extended to expected runtimes too

To automate, we need a concrete syntax for expectations!

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

hat are probabilistic weakest preconditons? Syntacticall

RELATIVE COMPLETENESS

SOUNDNESS AND COMPLETENESS OF AN AXIOM SYSTEM FOR
PROGRAM VERIFICATION"
STEPHEN A. COOK!

Abstract. A simple ALGOL-like language is defined which includes conditional, while, and

sy r givn o the anusg. The o sysen s prov o bosound, i crnsese

2243 el retment o the proseure el e o posschres Wl lobal i it
declar

q..,,..
tency, completeness

. Introduction. The axiomatic approach (o program verification along the

e formutea by C. A. R. Hoare (see, for example, [6] and [7)) has received a

great deal of attention in the last few years. My purpose here is to pick a simple
Hoare style axi

for the language, and then give a clean and careful justification for both the
soundness and adequacy (i.c., completeness) of the axiom system. The justifica-
tion is done by introducing an interpretive semantics for the language, rather like
thatin [10) and (8],
axiom systems, but for somewhat different language features, axioms, and

i d reis new

proofs inspired by an
of this paper [2] appear in [3), [11],[12], [13], and [14]). T have tried to choose the
‘axioms and rules of the formal system o be as simple as possible, subject to the
nts that they be sound, complete, and in the style and spirit of Hoare’s

Joost-Pieter Katoen

Relative complete verification

Ordinary Programs
F € FO-Arithmetic
implies

wp[[PT(F) € FO-Arithmetic

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Relative complete verification

Ordinary Programs

F € FO-Arithmetic
implies

wp[[PT(F) € FO-Arithmetic

G = wp[[P]|(F)
is effectively decidable

modulo an oracle for deciding =

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Relative complete verification

Ordinary Programs Probabilistic Programs

F € FO-Arithmetic f € SomeSyntax
implies

wp[[P](f) € SomeSyntax

implies

wp[[PT(F) € FO-Arithmetic

G = wp[[P]|(F)
is effectively decidable

modulo an oracle for deciding =

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Relative complete verification

Ordinary Programs Probabilistic Programs

F € FO-Arithmetic f € SomeSyntax
implies

wp[[P](f) € SomeSyntax

implies

wp[[PT(F) € FO-Arithmetic

G = wp[P](F) g & wp[PI(f)
is effectively decidable is effectively decidable

modulo an oracle for deciding

modulo an oracle for deciding = . .
between two syntactic expectations.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Relative complete verification

Ordinary Programs Probabilistic Programs

F € FO-Arithmetic f € SomeSyntax
implies

wp[[P](f) € SomeSyntax

implies

wp[[PT(F) € FO-Arithmetic

G = wp[P](F) g & wp[PI(f)
is effectively decidable is effectively decidable

modulo an oracle for deciding

modulo an oracle for deciding = . .
between two syntactic expectations.

Q: How does the SomeSyntax look like?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditons? Syntactically.

50 years of Hoare logic

“Completeness is a subtle manner and requires a careful analysis”

Krzysztof R. Apt Ernst-Ridiger Olderog

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Requirements on a syntax

1
x := geometric(1/4);
y := geometric(1/4);
) t := x+y+l [5/9] t := x+y;
2 r :=1;
x :=1; for i in 1..3 {
while (x > 0) { s :=0
x +:=2 [1/2] x -:= 1 for j in 1..2t {
} s := s+1 [1/2] skip
}
1 r := (s == t)
}

rational numbers, algebraic numbers, transcendental numbers, etc.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Syntax of expectations

P The set Exp of syntactic expectations

f —> a arithmetic expressions
| [p]-f guarding
| f+f addition
| £-F multiplication
| ex:f supremum over variable x
| (xif infimum over variable x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Syntax of expectations

P The set Exp of syntactic expectations

f —> a arithmetic expressions
| [e]-f guarding
| F+f addition
| £-F multiplication
| ex:f supremum over variable x
| (x:f infimum over variable x

» Examples:

exi[x-x<y]-x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Syntax of expectations

P The set Exp of syntactic expectations

f —> a arithmetic expressions
| [e]-f guarding
| F+f addition
| £-F multiplication
| ex:f supremum over variable x
| (x:f infimum over variable x

» Examples:

ex:i[x-x<yl-x =y

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Syntax of expectations

P The set Exp of syntactic expectations

f —> a arithmetic expressions
| [e]-f guarding
| F+f addition
| f-f multiplication
| ex:f supremum over variable x
| (x:f infimum over variable x
» Examples:
ex:i[x-x<yl-x =y 2zi(z-(x+1)=1]-z = x-lkl

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditons? Syntactically.

Examples
. 3 2 .
P polynomials y+x” +2x"+x-7 widely used as templates
x* =3x+4
» rational functions ———
y>x-3y+1

P square roots /x

P irrational, algebraic and transcendental numbers % T, e ...

used in run-time/termination analysis

X
» Harmonic numbers H, = X
k=1

x| =

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditons? Syntactically.

Expressiveness [Batz, K. et al, POPL 2021]

The set Exp of syntactic expectations is expressive.

For all pGCL programs P and f € Exp it holds:

wpl PI(I7D) = [el

for some syntactic expectation g € Exp.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

What are probabilistic weakest preconditons? Syntactically.

Expressiveness [Batz, K. et al, POPL 2021]

The set Exp of syntactic expectations is expressive.

For all pGCL programs P and f € Exp it holds:

wpl PI(I7D) = [el

for some syntactic expectation g € Exp.

Expressiveness does not mean decidability, e.g.,

for f, g € Exp, does [g] © wp[PT([f]]) is undecidable

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Inductive invariant synthesis

Automated synthesis of inductive invariants

CEGIS loop
Template T’ Ie(T)
| e —anl
Template Generator Synthesizer Verifier
T | Mo L]
e E——— Counterexample s

R

I is inductive invariant v/

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Bounded retransmission protocol [Helmink et al, 1993]
» Send file of N = 10™° packets via lossy channel

P Packet loss probability ﬁ, say

P # packet retransmissions < 10; otherwise file transmission fails

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Bounded retransmission protocol [Helmink et al, 1993]

» Send file of N = 10™° packets via lossy channel

1
100" say
P # packet retransmissions < 10; otherwise file transmission fails

P Packet loss probability

sent :=0; fail :=0;
while (sent < N A fail < F){
{ fail :== fail +1}[0.01]{ fail := 0; sent := sent +1 }}
| -~

failed transmission successful transmission

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Bounded retransmission protocol [Helmink et al, 1993]

» Send file of N = 10™° packets via lossy channel

P Packet loss probability say

1
100
P # packet retransmissions < 10; otherwise file transmission fails

sent :=0; fail :=0; RBRP
while (sent < N A fail < F){
{ fail :== fail +1}[0.01]{ fail := 0; sent := sent +1 }}
| -~

failed transmission successful transmission

We verify wpl[BRP]|([fail = 10) < in 11 seconds. Fully automatically.

1
1000

Impossible for probabilistic model checkers!

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

An upper bound

‘ailed) <= 2.0) & ((sent) <= 2000000000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] *
25957797341567695057760649001/61484354788827

'069821936815201810718304251099/614843547888279600 ailed

0767178816711080 1/614843547888279600.) + [(((failed) <= 5.0) & ((sent) <= 2000000000.0) & ((faile
& ((sent) < 8000000000.0) & (((failed) * -1.0) < -2)] * (-15525957797341567695057760649001/614843547888279600

069821936815201810718304251099/ 790349 ailed

145272088539615300379330579593905637/7685544) + [(((failed) <= 7.0) & (((failed) * -1.0) < -5.0) & ((sent) <=
00000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * (15525957797341567695057760649001/614843547888279600
'069821936815201810718304251099/15525960149 failed

181401479122274118080107750725340393/614843547888279600: + [((((failed) * -1.0) < -7.0) & ((sent) <= 2000000000.0) & ((sel

00000.0) & ((failed) < 10)] * (- 15525957797341567695057760549001/6148435478882I‘JDUD‘
'069821936815201810718304251099/15525960149700: ai
)339930516705300621427955609394113371/6148435478882796002500000000000000000000) + l((((sent) t —1 0) < -2000000000.0) & ((sent) <= 4000000000.0) &
led) <= 2.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * (-78411952129800201 /3’

7832608502 49401/310519. iled +6272956407 310519. ¢
sent) * -1.0) < —2000600000 O) & ((failed) <= 5.0) & ((sent) <= 4000000000.0) & ((failed) < 10.0) & ((sent) < 8000000000.0) & (((faxled) * -—1 0) < -
111952129300201 310 +77627832608502199960249401/
42203697204 392! ﬂ:: 335149993) + [(((failed) <= 7.0) & (((sent) * 1 0) < -2000000000.0) & ((sent) <= 40000030(
failed) * -1.0) < -5.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * (~7841195212980020: 310
7832608502199960249401/7841 ailed +-1778649123689226 '““7/3105"u) + [((((fai’
< -7.0) & (((sent) * -1. 3) < —2000000“0 0) & ((sent) <= 4000000000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] *
111952129800 310! +77627832608502199960249401/7841196005000000000000000000+failed
)62003746307370728135389641149/’1ﬂ'-‘“ 0.) + [(((sent) <= 6000000000.0) & ((failed) <= 2.0) & (((sent) * -1.0) < -4000000000.
lt) < 8000000000.0) & (1falled) < 10)] * (156823920

1568239: iled +316807 1/156823920:) + [(((failed) <= 5.0) &
|t) <= 6000000000 0) & (((sent) * -1.0) < -4000000000.0) & ((failed) < 10.0) & ((sent) < 8000000000.0) & (((failed) * -1.0) < -2)] *

6823920 +3920498802000000099, ailed

'18402802224757492537/1““‘"‘“""1) + [(((falled) <= 7.0) & (((faxled) * -1.0) < -5.0) & ((sent) <= 6000000000.0) & (((sent) * -1,
000000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * 1/1568239.
498802000000099/3960100000000000000000000x failed +—898285000430174122883393/1~.mu4u L}) + [((((falled) * -1.0) < -7.0) & ((sent
00000.0) & (((sent) * -1.0) < -4000000000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * (1/1568239201
498802000000099/396010000000000000000xfailed 0-1240473977252335427334331/15652392010000000000000000) + [(((failed) <= 2.0) & (((sent) * -1.0) <
000000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * (-1/39 +99/39601 ailed +1/4950125) + [((((sent) * -1.0) <

000000.0) & ((failed) <= 5.0) & ((failed) < 10.0) & ((sent) < 8000080000 0) & (((failed) * -1.0) < -2)] * (-1/39601000000000000*sent

1990000000000+ failed +7994109599/39601000000000000) + l((((sent) * -1.0) < -6000000000.0) & ((failed) <= 7.0) & (((failed) * -1.0) < -5.0) & ((sent)
00000.0) & ((failed) < 10)] * (-1/3960' ailed +-226833930001/39601000000000000) + [((((failed) * -1.0) < -7.0) & ((1
0) < -6000000000.0) & ((sent) < 8000000000.0) & ((faﬂed) < 13)] * (~1/39601000000000000xsent +99/10000xfailed +-3132431 1/39601

(((sent) < 8000000000.0) & ((failed) < 10.0))) & (((failed) * -1.0) <= -10.0) & ((failed) <= 10)] * (1.0) + [((! (((sent) < 8000000000.0) & ((faﬂe(
)) & (! ((((failed) * -1.0) <= -10.0) & ((failed) <= 10)))] * (@)

Joost-Pieter Katoen

Synthesising inductive invariants

Problem: find a piece-wise linear inductive invariant / s.t.

d()cland IEg or determine there is no such /

I is inductive for f and g

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Synthesising inductive invariants

Problem: find a piece-wise linear inductive invariant / s.t.

d()cland IEg or determine there is no such /

I is inductive for f and g

Approach: use template-based invariants of the (simplified) form:

T = [by]-ap +--+[be]- ak

with
P b; is a boolean combination of linear inequalities over program vars
P a; a linear expression over the program variables with [b;]-a; =0

P the b;'s partition the state space, i.e., s F b; for a unique i

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Synthesising inductive invariants

Problem: find a piece-wise linear inductive invariant / s.t.

d()cland IEg or determine there is no such /

I is inductive for f and g

Approach: use template-based invariants of the (simplified) form:

T = [b1]-ar+--+[be]- ax
with
P b; is a boolean combination of linear inequalities over program vars
P a; a linear expression over the program variables with [b;]-a; =0
P the b;'s partition the state space, i.e., s F b; for a unique i

Example: [c=1]-(2-x + 1) +[c#1] - x is in the above form,
and [x = 1]-x +[x = 2]y can be rewritten into it.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Checking linear entailments [K., Mclver et al, SAS 2010]

|
For piecewise linear expectations:

f =1[bi]-ar+--+[bc]-ax and g = [c1]- e+ +[cm] em

it is decidable whether the quantitative entailment f E g holds

k m
f £ g if and only if /\ /\(b,- Ac) = aEeg is valid

formula in quantifier-free linear arithmetic

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

CEGIS for probabilistic invariants [Batz, K. et al, TACAS 2023]

CEGIS loop
| Template T l = b
N e |
Template Generator Synthesizer Verifier
T | S —
Unsat. hint? Counterexample s

I is inductive invariant v/

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

CEGIS for probabilistic invariants [Batz, K. et al, TACAS 2023]

CEGIS loop
| Template T l = b
N e |
Template Generator Synthesizer Verifier
T | S —
Unsat. hint? Counterexample s

I is inductive invariant v/

P For finite-state programs, synthesis is sound and complete
P Applicable to lower bounds: UPAST and difference boundedness

» Uses SMT with QF-LRA (the synthesiser) and QF-LIRA (the verifier)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

CEGIS for probabilistic invariants [Batz, K. et al, TACAS 2023]

CEGIS loop
| Template T l = b
N e |
Template Generator Synthesizer Verifier
T | S —
Unsat. hint? Counterexample s

I is inductive invariant v/

P For finite-state programs, synthesis is sound and complete
P Applicable to lower bounds: UPAST and difference boundedness

» Uses SMT with QF-LRA (the synthesiser) and QF-LIRA (the verifier)

CEGISPRO?2 tool: https://github.com/moves-rwth/cegispro2
chedk & ouk !

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Automation

Experiments Goreporison To CRrnponson to o
rodel én:c\:}n& ML Eedanique

MO/TO e .

éooo cmmes 7 MO/TO 4o

1000] 200 14 ¢
< 100 &, ‘
&z 100 & oo [
O 20 g g LI TV
= ? 2
n S €2

o 1
I

R N A v R 2
\A —_
CEGISPRO2 5 CEGISPRO2 2

Synthesis of upper bounds
for finite-state programs
TO = 2h, MO = 8GB

Synthesis of lower bounds
TO = 5min

Joost-Pieter Katoen

Probabilistic Programs. Verified. Push Button.

Outlook: a probabilistic Dafny? Kﬁ)’?

expected run-times partial correctness expected resource consumption
martingales positive almost-sure termination almost-sure terminatioxn
amortised analysis Park induction conditional expected values
total correctness k-induction probabilistic sensitivity

¥

Quantitative Intermediate Verification Language (HeyVL)

2

VC Generator M Real-valued Logic (HeyLo) M SMT Solver

Caesar: A verification infrastructure for probabilistic programs

e ck
"t out

caesarverifier.org

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

Automation

A big thanks to my co-workers!

Ezio Kevin Mingshuai Sebastian Benjamin Laura Lutz
Bartocci Batz Chen Junges Kamingki Kovacs Klinkenberg

Christoph Annabelle Marcel Carroll Federico Philipp Tobias
Matheja Mclver Moosbrugger Morgan Olmedo Schroer Winkler

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.

