Dijkstra Goes Random

Weakest-Precondition-Reasoning on Probabilistic Programs

Joost-Pieter Katoen

RWTH

The 20th KeY Symposium, July 2024

%

Joost-Pieter Katoen Dijkstra Goes Random 1/1



Motivation

Probabilistic programs

Programs with random assignments and conditioning

{w:=023}[5/7] {w:=173;
if (w = 0) { ¢ := poisson(6) }
else { ¢ := poisson(2) };
observe (c = 5)
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1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]
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Probabilistic programs

random assignments

{w:=023}[5/7] {w:=113;
if (w = 0) { ¢ := poisson(6)
else { ¢ := poisson(2) };
observe (c = 5)

and conditioning

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]
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Probabilistic programs

Programs with random assignments and conditioning

{w:=023}[5/7] {w:=173;
if (w = 0) { ¢ := poisson(6) }
else { ¢ := poisson(2) };
observe (c = 5)

They encode:
P randomised algorithms
P probabilistic graphical models beyond Bayes' networks
P controllers for autonomous systems
P security mechanisms

"Probabilistic programming aims to make

probabilistic modeling and machine learning accessible to the programmer."1

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]
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before 2018

since 2018

the UN diagnoses seismic events
using probabilistic programs

[Arora et al, Bull. Seism. 2017]
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Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

X :=1;
while (x > 0) {
x = x+2 [1/2] x := x-1

}
Vo
© 4
\ \ \ \ \ \ 1
© "L«//‘ r2 T b
2
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Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

X :=1;
while (x > 0) {

x = x+2 [1/2] x := x-1
}

If not, what is its probability to diverge?

Joost-Pieter Katoen

Probabilistic Programs. Verified. Push Button.



Even if all loops are bounded [Flajolet et al, 2009]

x := geometric(1/4);
y := geometric(1/4);
t = xt+ty+l [5/9] t := x+y;

r :=1;
for i in 1..3 {
s :=0
for j in 1..2t {
s := s+1 [1/2] skip
}
r := (s == t)
}
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Even if all loops are bounded [Flajolet et al, 2009]

x := geometric(1/4);
y := geometric(1/4);
t = xt+ty+l [5/9] t := x+y;

r :=1;
for i in 1..3 {
s :=0
for j in 1..2t {
s := s+1 [1/2] skip
}
r := (s == t)
}

What is the probability that r equals one on termination?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Positive AST

int x := 1;

bool c := true;

while (c) {
c := false [0.5] c := true;
X 1= 2%x

}

Finite expected termination time?
aka: is this program positive AST?

Probabilistic Programs. Verified. Push Button.
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Positive AST

int x := 1;
bool c := true;
while (c) { while (x > 0) {
c := false [0.5] c := true; x = x-1

X 1= 2%x T

}
Finite termination time!
Finite expected termination time? PAST.

aka: is this program positive AST?
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Motivation

Positive AST

int x := 1;
bool c := true;
while (c) { ° while (x > 0) {
c := false [0.5] c := true; s x = x-1

X 1= 2%x T

}
Finite termination time!
Finite expected termination time? PAST.

aka: is this program positive AST?

Joost-Pieter Katoen

Expected runtime of these programs in sequence?
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Motivation

Positive AST

int x := 1;
bool c := true;
while (c) { ° while (x > 0) {
c := false [0.5] c := true; x = x-1

X 1= 2%x T

}
Finite termination time!
Finite expected termination time? PAST.

aka: is this program positive AST?

Expected runtime of these programs in sequence? (00)

PasT (¢) A~ PasT(Q) >‘é PasT (P59 )

Probabilistic Programs. Verified. Push Button.
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Our objective

A powerful, simple proof calculus for probabilistic programs.
At the source code level.

No “descend” into the underlying probabilistic model.
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Our objective

A powerful, simple proof calculus for probabilistic programs.
At the source code level.

No “descend” into the underlying probabilistic model.

Push automation as much as we can.

This is a true challenge: undecidability!

Typically “more undecidable” than deterministic programs
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Motivation

Probabilistic programs are “more undecidable”
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Motivation

Probabilistic programs are “more undecidable”

AST for one input
is as hard as

the halting problem for all inputs

arithmetic hierarchy
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Probabilistic programs are “more undecidable”

AST for one input
is as hard as
the halting problem for all inputs
is as hard as

computing expected outcomes

arithmetic hierarchy
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Probabilistic programs are “more undecidable”

AST for one input

is as hard as
> the halting problem for all inputs
is as hard as

computing expected outcomes

but

deciding finite expected runtime?

Ay is “even more undecidable”

[Kaminski, K., MFCS 2015]
arithmetic hierarchy
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Roadmap of this talk

Part 1

P Probabilistic weakest preconditions

Part 2

P Proof rules for probabilistic loops

Part 3

P Relative completeness and automation

Joost-Pieter Katoen
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What are probabilistic weakest preconditions? Semantically.

“Dijkstra’s weakest preconditions go random”

WEAKEST PRE-EXPECTATIONS

Dexter Kozen, Annabelle Mclver, and Carroll Morgan

Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditions? Semantically.

From predicates to quantities

P Let program P be:

taves el vo\ae

x := x+5 [4/5] x := 10 oF %

The expected value o@on P’s termination is:

4 1 4x
g(X+5)+§10 = ?4‘6
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What are probabilistic weakest preconditions? Semantically.

From predicates to quantities

P Let program P be:
x := x+5 [4/5] x := 10

The expected value of x on P's termination is:

4 1
g(X+5)+§10 = ?4‘6

P The probability that x = 10 on P’s termination is:

1
[x+5=10] + =
lverson brackets

ol &~
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What are probabilistic weakest preconditions? Semantically.

Expectations

The set of expectations® (read: random variables):

E =<f]|f: S, - Ryou{oo}

states

%+ expectations in probability theory.
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What are probabilistic weakest preconditions? Semantically.

Expectations

The set of expectations® (read: random variables):

E=<f]|f: ﬁ > Rygu{oo}

states

Examples: [x = 5] 4?X+6 4'[X=5¢ 1 x2+\/(y+1)...

%+ expectations in probability theory.
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What are probabilistic weakest preconditions? Semantically.

Expectations

The set of expectations® (read: random variables):

E=<f]|f: ﬁ > Rygu{oo}

states

Examples: [x = 5] 4?X+6 4'[X=5¢ 1 x2+\/(y+1)...

(E,E) is a complete lattice where f E g if and only if Vs € S. f(s) < g(s)

expectations are the quantitative analogue of predicates

%+ expectations in probability theory.

Joost-Pieter Katoen
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What are probabilistic weakest preconditions? Semantically.

Weakest pre-expectations

For program P, let wp[[P] : E - EE an expectation transformer

g = wp[[P]I(f) is P’'s weakest pre-expectation w.r.t. post-expectation f iff

the expected value of f after executing P on input s equals g(s)
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What are probabilistic weakest preconditions? Semantically.

Weakest pre-expectations
For program P, let wp[[P] : E - EE an expectation transformer

g = wp[[P]I(f) is P’'s weakest pre-expectation w.r.t. post-expectation f iff

the expected value of f after executing P on input s equals g(s)

Examples:
For P:: x := x+5 [4/5] x := 10, we have:

wpl PTI(x) = 4?X+6 and  wp[P]([x =10]) = %

wp[[ PTI([¢]) is the probability of predicate © on P’s termination

wp[[ PT(1) is P’s termination probability

Probabilistic Programs. Verified. Push Button.
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What are probabilistic weakest preconditions? Semantically.

Kozen’s duality theorem
wp[[ PT()(s) is the expected value of f after running P on input s

Let up be the distribution over P's final states when P starts in s.
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What are probabilistic weakest preconditions? Semantically.

Kozen’s duality theorem
wp[[ PT()(s) is the expected value of f after running P on input s

Let up be the distribution over P's final states when P starts in s.

Then for post-expectation 7: wp[[ P](f) Z wp(t
%—J
“backward” &Y_,
“forward”
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What are probabilistic weakest preconditions? Semantically.

Kozen’s duality theorem
wp[[ PT()(s) is the expected value of f after running P on input s

Let up be the distribution over P's final states when P starts in s.

Then for post-expectation 7: wp[[ P](f)(s) = Z,uf;(t) - (t)
—_

“backward” &Y_,

“forward”

Pictorially:

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.
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What are probabilistic weakest preconditions? Semantically.

How to obtain wp for a program?

Syntax probabilistic program P Semantics wp[[ P]|(f)
skip sdeston T f
x:=E flx := E]
X As. [@ (v F(s[x = v])) dpse
P Q wp[ P (wp[ Q(f))

—

bodkmord s }

Joost-Pieter Katoen
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What are probabilistic weakest preconditions? Semantically.

How to obtain wp for a program?

Syntax probabilistic program P Semantics wp[[ P]|(f)
skip f
x:=E fx = E]
X As. [@ (v F(s[x = v])) dpse
P; Q wpll PT (wp[ QT(f))
if (p) P else Q [e]- wpll PTI(F) + [~]- wpl Q1)
Plp]Q p - wpll PI(f) + (1-p) - wp[ QT(f)
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What are probabilistic weakest preconditions? Semantically.

How to obtain wp for a program?

Syntax probabilistic program P Semantics wp[[ P]|(f)
skip £
x:i=E f[x := E]
X As. [@ (v F(s[x = v])) dpse
P; Q wpll PT (wp[ QT(f))
if (p) P else Q [e]- wpl PI() + [~¢]- wpl Q1(f)
Plp]Q p - wpll PI(f) + (1-p) - wp[ QT(f)
while () {P} Ifp X. (L] - wpl PTI(X)) + [-¢] - f)

loop characteristic function ®¢(X)

where Ifp is the least fixed point wrt. the ordering C on E.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditions? Semantically.

Examples

1. Consider again program P:
|x := x+5 [4/5] x := 10 |

Fowe have: X+ S

ATPTR) = Sl = 60 + Lowpllx = 10T

_ 4 1 _ 4x
= 2+(x+5) + 5-10 = -t 6
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What are probabilistic weakest preconditions? Semantically.

Examples

1. Consider again program P:
|x := x+5 [4/5] x := 10 |

For f = x, we have: R4S
wolPT(x) = Swpllx 1= 610 + Lwplx = 10](x)
_ 4 1 _ 4—X
= 2+(x+5) + 5-10 = -t 6

2. For program P (again) and(f =[x = 10], we have:

wpl P[x=10]) = § - wpllx i= x+5]([x=10]) + § - wpllx := 10]([x=10]
= §-[x+5=10]+ % -[10 = 10]
_ 4-[x=5]+1
- 5

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditions? Semantically.

Loops

wpl[while (0){ P}](F) = Ifp X. ([e]- wpl PT(X) + [-¢]- 1)

« J

loop characteristic function ®¢(X)
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What are probabilistic weakest preconditions? Semantically.

Loops

wpl[while (0){ P}](F) = Ifp X. ([e]- wpl PT(X) + [-¢]- 1)

« J

loop characteristic function ®¢(X)

» Function ®; : E - E is Scott continuous on (E, E)

» By Kleene's fixed point theorem:|Ifp ®¢ = sup,ey 7(0)

» ®7(0) is 's expected value after n times running P, starting in 0

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Examples

X :=1;
while (x > 0) {

x +:= 2 [1/2] x -:

}

post-expectation: 1

Joost-Pieter Katoen

What are probabilistic weakest preconditions? Semantically.

= geometric(1/4);

= geometric(1/4);

X+y+1 [5/9] t = X+Y’
=1;

or i in 1..3 {

s :=0
for j in 1..2t {
s := s+1 [1/2] skip
}
r := (s == t)

Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditions? Semantically.

Examples

x := geometric(1/4);
y := geometric(1/4);
weakest pre-expectation: % vos ;1<+y+1 (/9] & == xty;
r :=1;
X = 1, i i
H f 1..3
while (x > 0) { ors 1.=1n0 ¢
x +:=2 [1/2] x —:= 1 for j in 1..2t {
} s := s+1 [1/2] skip
post-expectation: 1 1}: = (s == t)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Examples

weakest pre-expectation:

X :=1;
while (x > 0) {

x +:= 2 [1/2] x -:

}

post-expectation: 1

Joost-Pieter Katoen

What are probabilistic weakest preconditions? Semantically.

x := geometric(1/4);
y := geometric(1/4);
t = x+y+1 [5/9] t :
r :=1;
for i in 1..3 {

s :=0

for j in 1..2t {

}
r := (s == t)
}

s := s+1 [1/2] skip

post-expectation: [r=1]

Probabilistic Programs. Verified. Push Button.



Examples

weakest pre-expectation:
X :=1;
while (x > 0) {
x +:=2 [1/2] x -:=
¥

post-expectation: 1

Joost-Pieter Katoen

V5-1

2

1

What are probabilistic weakest preconditions? Semantically.

weakest pre-expectation: (1)

us

x := geometric(1/4);
y := geometric(1/4);

t = xt+y+1 [5/9] t := x+y;
r :=1;
for i in 1..3 {

s :=0

for j in 1..2t {
s := s+1 [1/2] skip
}
r := (s == t)
}

post-expectation: [r=1]

Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditions? Semantically.

Probabilistic weakest liberal preconditions
Restrict f to denote probabilities, i.e., f(s) < 1 for each state s
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What are probabilistic weakest preconditions? Semantically.

Probabilistic weakest liberal preconditions

Restrict f to denote probabilities, i.e., f(s) < 1 for each state s
Loops under wlp:

wip[while (¢) { P }1(f) = ([e] - wlpl PT(X) + [-¢] - )

. J

loop characteristic function ®¢(X)
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What are probabilistic weakest preconditions? Semantically.

Probabilistic weakest liberal preconditions

Restrict f to denote probabilities, i.e., f(s) < 1 for each state s
Loops under wlp:

wip[while (¢){ P}]I(f) =

.

gfp X. ([]- wip[ PT(X) + [-¢]- f)

J

loop characteristic function ®¢(X)

Relating weakest liberal preconditions to wp:

wip[P1(f) = wplPI(f) + (1 - wp[PI(1))

’I‘ 'T probability that P diverges
osl
?“\:‘ =\ cocvre ckwess
Correcness

Joost-Pieter Katoen
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What are probabilistic weakest preconditions? Semantically.

Probabilistic weakest liberal preconditions

Restrict f to denote probabilities, i.e., f(s) < 1 for each state s
Loops under wlp:

wip[while () { P}(f) = gfp X. ([v]- wip[ PT(X) + [-¢]- f)

.

J

loop characteristic function ®¢(X)

Relating weakest liberal preconditions to wp:

wipl PII(f) = wplPI(f) + (1 -wp[PII(1))
probability that P diverges

If program P is AST:

wiplPT(f) = wp[PT(f) + (1 - wp[PI(1)) = wp[PI(f)
=1

Joost-Pieter Katoen
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What are probabilistic weakest preconditions? Semantically.

Bayesian learning by example
{w:=023}0/7T1{w:=113%;
if (w = 0) { ¢ := poisson(6) }
else { ¢ := poisson(2) };
observe (c = 5)

Probabilistic Programs. Verified. Push Button.
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What are probabilistic weakest preconditions? Semantically.

Bayesian learning by example

{w:=023}0/7T1{w:=113%;
if (w = 0) { ¢ := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

~~ 1rF —~ 1rF
T 0.75 T 0.75
2 05 2 05
~ 0.25 ~ 0.25 777
0 1 0 1
" \/ "
prvec Fos\eﬁbr
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What are probabilistic weakest preconditions? Semantically.

Bayesian learning by example

{w:=023}0/7T1{w:=113%;
if (w = 0) { ¢ := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

P

prior poske~or
~ 1rF ~ 1rF
T 0.75 T 0.75
3002'27 3002'2 b
&4 [ ] & 4

Probability mass is normalised by the probability of feasible runs

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]
The probability of feasible program runs:

wp[PT(1) = 1 - Pr{P violates an observation }

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]
The probability of feasible program runs:

wp[PT(1) = 1 - Pr{P violates an observation }

Weakest pre-expectation of observations:

wp[[observe o]|(f) = [¢]-

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]
The probability of feasible program runs:

wp[PT(1)) = 1 - Pr{P violates an observation }
¥

Weakest pre-expectation of observations:

wp[[observe o]|(f) = [¢]-

Normalisation:
wp[[ PT(f)
wp[ PII(1)

Joost-Pieter Katoen
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What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]
The probability of feasible program runs:

wp[PT(1) = 1 - Pr{P violates an observation }

Weakest pre-expectation of observations:

wp[[observe o]|(f) = [¢]-

Normalisation:
wp[[ PT(f)
wp[ PII(1)

wp[ P1(F)
wip[P](1)

Probabilistic Programs. Verified. Push Button.

Fine point: under possible program divergence:
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What are probabilistic weakest preconditions? Semantically.

Extensions of probabilistic wp

> ... for recursion [LICS 2016]
> ... for exact inference [TOPLAS 2018]
> ... for continuous distributions [SETTS 2019]
| for probabilistic separation logic [POPL 2019]
> ... for weighted programs [OOPSLA 2022]
> ... for expected runtime analysis [JACM 2018]
> ... for amortised runtime analysis [POPL 2023]

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Proof rules for probabilistic loops

HOW TO TREAT LOOPS?

Joost-Pieter Katoen ili | 5 ified. Push Button.



Upper bounds
Recall:

wplwhile (0){ P}]1(F) = Ifp X. ([]- wpl PT(X) + [~] - )

. )

¢f'(X )

By Park’s lemma: for while(p){P} and expectations f and I

de(l) E I implies  wp[while(p){P}](f) E /
——— I8 v J
“upper” invariant / Ifp &

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Upper bounds
Recall:

wplwhile (0){ P}]1(F) = Ifp X. ([]- wpl PT(X) + [~] - )

. )

¢f'(X )

By Park’s lemma: for while(p){P} and expectations f and I

de(l) E I implies  wp[while(p){P}](f) E /
——— I8 v J
“upper” invariant / Ifp &

Example: while(c = 0) { x++ [p]l ¢ := 1}

I = x+[c=0]: % is an “upper”-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

(/ C ®() A side conditions) implies | E Ifp &
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Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

(/ C ®() A side conditions) implies | E Ifp &
-—
where the side conditions for the loop while(p){P} are:

1. the loop is PAST, and

2. forany sk,  wp[PQ(|/(s)=1|)(s) < ¢ for some c € Ryg

conditional difference boundedness
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Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]
(I = ®¢(I) A side conditions) implies | E Ifp®
where the side conditions for the loop while(p){P} are:
1. the loop is PAST, and

2. forany sk,  wp[PQ(|/(s)=1|)(s) < ¢ for some c € Ryg

conditional difference boundedness

Example. Program: while(c = 0){ x++ [p]c := 1} satisfies the conditions.

I = x+[c=0]- % is a “lower"-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Proof rules for probabilistic loops

A proof rule for AST [Mclver, K. et al, POPL 2018]
Consider the loop while(p){ body} and let:
> V:S - Ryg with [-V] =[-¢p] V indicates termination
> p:R,o - (0,1] antitone probability
> d: R,y - R, antitone decrease

L XS‘& —_—— A{a,BSC\(\()
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Proof rules for probabilistic loops

A proof rule for AST [Mclver, K. et al, POPL 2018]
Consider the loop while(p){ body} and let:
> V:S - Ryg with [-V] =[-¢p] V indicates termination
> p:R,o - (0,1] antitone probability
» d:R.y - R, antitone decrease
If:

(o) wellbodyI(V) < V

expected val‘ue of V does r;ot;l'écrease by an iteration
in
[p]-(po V) = As.wpl[body]|(|V = V(s) = d(V(s))])(s)

.

and

with at least prob. p, V decreases at least by d

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Proof rules for probabilistic loops

A proof rule for AST [Mclver, K. et al, POPL 2018]
Consider the loop while(p){ body} and let:
> V:S - Ryg with [-V] =[-¢p] V indicates termination
> p:R,o - (0,1] antitone probability
> d: R,y - R, antitone decrease
If:

(o) wellbodyI(V) = V

expected value of V does not)iécrease by an iteration
Q

[p]-(pe V) = As.wpllbody][(|V = V(s) = d(V(s))]) (s)

.

and

with at least prob. p, V decreases at least by d

Then:
wp[[loop])(1) = 1 i.e., loopis AST

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Intuition

— loop iterations
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Proof rules for probabilistic loops

Intuition

V(i)
V(LD
2
V(2)
-
=
L
/
=
/
4’ 1 1 1 1 1 1 N
I A OO

— loop iterations

tic Programs. Verified. Push Button.
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Intuition

,+ with prob. 2 p( V(l))

L 2

— loop iterations
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Proof rules for probabilistic loops

Intuition

,+ with prob. 2 p( V(l))

V(i)

v\
=
v(2)
=
=
—
=
ez

0 1 I7 I8 |9 ’

%)
0
%)
1)
n
")
%)
0
%)
0

— loop iterations
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Intuition

,+ with prob. 2 p( V(l))

_. with prob. 2 p( V(4))

L 2

— loop iterations
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Intuition

Joost-Pieter Katoen
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Proof rules for probabilistic loops
,+ with prob. 2 p( V(l))

d(V(1)) < d(v(4))
by antitone d

0

L 2

— loop iterations

Probabilistic Programs. Verified. Push Button.



Proof rules for probabilistic loops

Intuition
p(V(1)) < p(V(4)
,+ with prob. 2 p( V(l)) --------
V(i)

VLN R N RIS TN I

\iZ) . with prob. 2 p( V(4))
I T
= d(V(1)) < d(V(4))

- by antitone d
! z 1 1 1 N
50 Isl |s7 ;8 Isg ?

— loop iterations

Joost-Pieter Katoen
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Proof rules for probabilistic loops

Intuition p(V(1)) < p(V(4)

. with prob. 2 p( v(1)) ........................

d(V(1)) < d(v(4))
by antitone d

L 2

- lodp iteratiopfs
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Proof rules for probabilistic loops

Intuition p(V(1)) < p(V(4)

. with prob. 2 p( v(1)) ........................

d(V(1)) < d(v(4))
by antitone d

L 2

— loop iterations

The closer to termination, the more V' decreases and this becomes more likely

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Example: symmetric 1D random walk

while (x > 0) {
x :=x-1 [1/2] x := x+1
}

o 4/2 1 4)7, 2 4/1 2 4/2 4
T N N NNy

4/?- ’\/7. M 2
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Example: symmetric 1D random walk

while (x > 0) {
x :=x-1 [1/2] x := x+1
}

P Terminates almost surely

» Witness of almost-sure termination:

> V=x
» p=1/2 and
> d=1

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Proof rules for probabilistic loops

Example: symmetric 1D random walk

while (x > 0) {
x :=x-1 [1/2] x := x+1
}

P Terminates almost surely Y . L AST
22 - \S no

» Witness of almost-sure termination:

> V=x
» p=1/2 and
> d=1

That's all you need to prove almost-sure termination!

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Example: fair-in-the-limit 1D random walk

while (x > 0) {
q = x/(2%x+1);
x-- [q] x++

s P £ T
[ |

(o]
N i U e
2/3 3/{ L,/:,_ :/3 .

The closer to 0, the more unfair — drifting away from 0 — it gets

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Example: fair-in-the-limit 1D random walk

o M4 Y, hy o3 ko
TR NY i U o

/s s 4/3 Sl 7T

P The closer to 0, the more unfair — drifting away from 0 — it gets

P> Witness of almost-sure termination:
» V = H,, the x-th Harmonic number 1 +1/2 + ... + 1/«

Yn ifH,_1<v<H,
> d(v) = ) " 0 , and
ITv=

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Proof rules for probabilistic loops

So far we studied several proof rules to verify whether
a given expectation (or triple V, p, d) meets

constraints that imply upper/lower bounds on weakest pre-expectations

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Proof rules for probabilistic loops

So far we studied several proof rules to verify whether
a given expectation (or triple V, p, d) meets

constraints that imply upper/lower bounds on weakest pre-expectations

This can be extended to expected runtimes too
Y

e.-3. ?mviv\a_ PasY
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Proof rules for probabilistic loops

So far we studied several proof rules to verify whether
a given expectation (or triple V, p, d) meets

constraints that imply upper/lower bounds on weakest pre-expectations

This can be extended to expected runtimes too

To automate, we need a concrete syntax for expectations!

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



hat are probabilistic weakest preconditons? Syntacticall

RELATIVE COMPLETENESS

SOUNDNESS AND COMPLETENESS OF AN AXIOM SYSTEM FOR
PROGRAM VERIFICATION"
STEPHEN A. COOK!

Abstract. A simple ALGOL-like language is defined which includes conditional, while, and

sy r givn o the anusg. The o sysen s prov o bosound, i crnsese

2243 el retment o the proseure el e o posschres Wl lobal i it
declar

q..,,..
tency, completeness

. Introduction. The axiomatic approach (o program verification along the

e formutea by C. A. R. Hoare (see, for example, [6] and [7)) has received a

great deal of attention in the last few years. My purpose here is to pick a simple
Hoare style axi

for the language, and then give a clean and careful justification for both the
soundness and adequacy (i.c., completeness) of the axiom system. The justifica-
tion is done by introducing an interpretive semantics for the language, rather like
thatin [10) and (8],
axiom systems, but for somewhat different language features, axioms, and

i d reis new

proofs inspired by an
of this paper [2] appear in [3), [11],[12], [13], and [14]). T have tried to choose the
‘axioms and rules of the formal system o be as simple as possible, subject to the
nts that they be sound, complete, and in the style and spirit of Hoare’s
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Relative complete verification

Ordinary Programs
F € FO-Arithmetic
implies

wp[[ PT(F) € FO-Arithmetic

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Relative complete verification

Ordinary Programs

F € FO-Arithmetic
implies

wp[[ PT(F) € FO-Arithmetic

G = wp[[P]|(F)
is effectively decidable

modulo an oracle for deciding =
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Relative complete verification

Ordinary Programs Probabilistic Programs

F € FO-Arithmetic f € SomeSyntax
implies

wp[[ P](f) € SomeSyntax

implies

wp[[ PT(F) € FO-Arithmetic

G = wp[[P]|(F)
is effectively decidable

modulo an oracle for deciding =

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Relative complete verification

Ordinary Programs Probabilistic Programs

F € FO-Arithmetic f € SomeSyntax
implies

wp[[ P](f) € SomeSyntax

implies

wp[[ PT(F) € FO-Arithmetic

G = wp[P](F) g & wp[ PI(f)
is effectively decidable is effectively decidable

modulo an oracle for deciding

modulo an oracle for deciding = . .
between two syntactic expectations.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Relative complete verification

Ordinary Programs Probabilistic Programs

F € FO-Arithmetic f € SomeSyntax
implies

wp[[ P](f) € SomeSyntax

implies

wp[[ PT(F) € FO-Arithmetic

G = wp[P](F) g & wp[ PI(f)
is effectively decidable is effectively decidable

modulo an oracle for deciding

modulo an oracle for deciding = . .
between two syntactic expectations.

Q: How does the SomeSyntax look like?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditons? Syntactically.

50 years of Hoare logic

“Completeness is a subtle manner and requires a careful analysis”

Krzysztof R. Apt Ernst-Ridiger Olderog

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Requirements on a syntax

1
x := geometric(1/4);
y := geometric(1/4);
) t := x+y+l [5/9] t := x+y;
2 r :=1;
x :=1; for i in 1..3 {
while (x > 0) { s :=0
x +:=2 [1/2] x -:= 1 for j in 1..2t {
} s := s+1 [1/2] skip
}
1 r := (s == t)
}

rational numbers, algebraic numbers, transcendental numbers, etc.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Syntax of expectations

P The set Exp of syntactic expectations

f —> a arithmetic expressions
| [p]-f guarding
| f+f addition
| £-F multiplication
| ex:f supremum over variable x
| (xif infimum over variable x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Syntax of expectations

P The set Exp of syntactic expectations

f —> a arithmetic expressions
| [e]-f guarding
| F+f addition
| £-F multiplication
| ex:f supremum over variable x
| (x:f infimum over variable x

» Examples:

exi[x-x<y]-x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Syntax of expectations

P The set Exp of syntactic expectations

f —> a arithmetic expressions
| [e]-f guarding
| F+f addition
| £-F multiplication
| ex:f supremum over variable x
| (x:f infimum over variable x

» Examples:

ex:i[x-x<yl-x =y

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Syntax of expectations

P The set Exp of syntactic expectations

f —> a arithmetic expressions
| [e]-f guarding
| F+f addition
| f-f multiplication
| ex:f supremum over variable x
| (x:f infimum over variable x
» Examples:
ex:i[x-x<yl-x =y 2zi(z-(x+1)=1]-z = x-lkl

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditons? Syntactically.

Examples
. 3 2 .
P polynomials y+x” +2x"+x-7 widely used as templates
x* =3x+4
» rational functions ———
y>x-3y+1

P square roots  /x

P irrational, algebraic and transcendental numbers % T, e ...

used in run-time/termination analysis

X
» Harmonic numbers H, = X
k=1

x| =

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditons? Syntactically.

Expressiveness [Batz, K. et al, POPL 2021]

The set Exp of syntactic expectations is expressive.

For all pGCL programs P and f € Exp it holds:

wpl PI(I7D) = [el

for some syntactic expectation g € Exp.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



What are probabilistic weakest preconditons? Syntactically.

Expressiveness [Batz, K. et al, POPL 2021]

The set Exp of syntactic expectations is expressive.

For all pGCL programs P and f € Exp it holds:

wpl PI(I7D) = [el

for some syntactic expectation g € Exp.

Expressiveness does not mean decidability, e.g.,

for f, g € Exp, does [g] © wp[PT([f]]) is undecidable

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Inductive invariant synthesis

Automated synthesis of inductive invariants

CEGIS loop
Template T’ Ie(T)
| e —anl
Template Generator Synthesizer Verifier
T | Mo L ]
e E——— Counterexample s

R

I is inductive invariant v/

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Bounded retransmission protocol [Helmink et al, 1993]
» Send file of N = 10™° packets via lossy channel

P Packet loss probability ﬁ, say

P # packet retransmissions < 10; otherwise file transmission fails

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Bounded retransmission protocol [Helmink et al, 1993]

» Send file of N = 10™° packets via lossy channel

1
100" say
P # packet retransmissions < 10; otherwise file transmission fails

P Packet loss probability

sent :=0; fail :=0;
while (sent < N A fail < F){
{ fail :== fail +1}[0.01]{ fail := 0; sent := sent +1 }}
| -~

failed transmission successful transmission

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Bounded retransmission protocol [Helmink et al, 1993]

» Send file of N = 10™° packets via lossy channel

P Packet loss probability say

1
100
P # packet retransmissions < 10; otherwise file transmission fails

sent :=0; fail :=0; RBRP
while (sent < N A fail < F){
{ fail :== fail +1}[0.01]{ fail := 0; sent := sent +1 }}
| -~

failed transmission successful transmission

We verify wpl[ BRP]|([fail = 10) < in 11 seconds. Fully automatically.

1
1000

Impossible for probabilistic model checkers!

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



An upper bound

‘ailed) <= 2.0) & ((sent) <= 2000000000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] *
25957797341567695057760649001/61484354788827

'069821936815201810718304251099/614843547888279600 ailed

0767178816711080 1/614843547888279600. ) + [(((failed) <= 5.0) & ((sent) <= 2000000000.0) & ((faile
& ((sent) < 8000000000.0) & (((failed) * -1.0) < -2)] * (-15525957797341567695057760649001/614843547888279600

069821936815201810718304251099/ 790349 ailed

145272088539615300379330579593905637/7685544 ) + [(((failed) <= 7.0) & (((failed) * -1.0) < -5.0) & ((sent) <=
00000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * ( 15525957797341567695057760649001/614843547888279600
'069821936815201810718304251099/15525960149 failed

181401479122274118080107750725340393/614843547888279600: + [((((failed) * -1.0) < -7.0) & ((sent) <= 2000000000.0) & ((sel

00000.0) & ((failed) < 10)] * (- 15525957797341567695057760549001/6148435478882I‘JDUD‘
'069821936815201810718304251099/15525960149700: ai
)339930516705300621427955609394113371/6148435478882796002500000000000000000000) + l((((sent) t —1 0) < -2000000000.0) & ((sent) <= 4000000000.0) &
led) <= 2.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * (-78411952129800201 /3’

7832608502 49401/310519. iled +6272956407 310519. ¢
sent) * -1.0) < —2000600000 O) & ((failed) <= 5.0) & ((sent) <= 4000000000.0) & ((failed) < 10.0) & ((sent) < 8000000000.0) & (((faxled) * -—1 0) < -
111952129300201 310 +77627832608502199960249401/
42203697204 392! ﬂ:: 335149993 ) + [(((failed) <= 7.0) & (((sent) * 1 0) < -2000000000.0) & ((sent) <= 40000030(
failed) * -1.0) < -5.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * (~7841195212980020: 310
7832608502199960249401/7841 ailed +-1778649123689226 '““7/3105"u ) + [((((fai’
< -7.0) & (((sent) * -1. 3) < —2000000“0 0) & ((sent) <= 4000000000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] *
111952129800 310! +77627832608502199960249401/7841196005000000000000000000+failed
)62003746307370728135389641149/’1ﬂ'-‘“ 0. ) + [(((sent) <= 6000000000.0) & ((failed) <= 2.0) & (((sent) * -1.0) < -4000000000.
lt) < 8000000000.0) & (1falled) < 10)] * ( 156823920

1568239: iled +316807 1/156823920: ) + [(((failed) <= 5.0) &
|t) <= 6000000000 0) & (((sent) * -1.0) < -4000000000.0) & ((failed) < 10.0) & ((sent) < 8000000000.0) & (((failed) * -1.0) < -2)] *

6823920 +3920498802000000099, ailed

'18402802224757492537/1““‘"‘“""1 ) + [(((falled) <= 7.0) & (((faxled) * -1.0) < -5.0) & ((sent) <= 6000000000.0) & (((sent) * -1,
000000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * 1/1568239.
498802000000099/3960100000000000000000000x failed +—898285000430174122883393/1~.mu4u L} ) + [((((falled) * -1.0) < -7.0) & ((sent
00000.0) & (((sent) * -1.0) < -4000000000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * ( 1/1568239201
498802000000099/396010000000000000000xfailed 0-1240473977252335427334331/15652392010000000000000000) + [(((failed) <= 2.0) & (((sent) * -1.0) <
000000.0) & ((sent) < 8000000000.0) & ((failed) < 10)] * (-1/39 +99/39601 ailed +1/4950125) + [((((sent) * -1.0) <

000000.0) & ((failed) <= 5.0) & ((failed) < 10.0) & ((sent) < 8000080000 0) & (((failed) * -1.0) < -2)] * (-1/39601000000000000*sent

1990000000000+ failed +7994109599/39601000000000000) + l((((sent) * -1.0) < -6000000000.0) & ((failed) <= 7.0) & (((failed) * -1.0) < -5.0) & ((sent)
00000.0) & ((failed) < 10)] * (-1/3960' ailed +-226833930001/39601000000000000) + [((((failed) * -1.0) < -7.0) & ((1
0) < -6000000000.0) & ((sent) < 8000000000.0) & ((faﬂed) < 13)] * (~1/39601000000000000xsent +99/10000xfailed +-3132431 1/39601

(((sent) < 8000000000.0) & ((failed) < 10.0))) & (((failed) * -1.0) <= -10.0) & ((failed) <= 10)] * (1.0) + [((! (((sent) < 8000000000.0) & ((faﬂe(
)) & (! ((((failed) * -1.0) <= -10.0) & ((failed) <= 10)))] * (@)
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Synthesising inductive invariants

Problem: find a piece-wise linear inductive invariant / s.t.

d()cland IEg or determine there is no such /

I is inductive for f and g
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Synthesising inductive invariants

Problem: find a piece-wise linear inductive invariant / s.t.

d()cland IEg or determine there is no such /

I is inductive for f and g

Approach: use template-based invariants of the (simplified) form:

T = [by]-ap +--+[be]- ak

with
P b; is a boolean combination of linear inequalities over program vars
P a; a linear expression over the program variables with [b;]-a; =0

P the b;'s partition the state space, i.e., s F b; for a unique i
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Synthesising inductive invariants

Problem: find a piece-wise linear inductive invariant / s.t.

d()cland IEg or determine there is no such /

I is inductive for f and g

Approach: use template-based invariants of the (simplified) form:

T = [b1]-ar+--+[be]- ax
with
P b; is a boolean combination of linear inequalities over program vars
P a; a linear expression over the program variables with [b;]-a; =0
P the b;'s partition the state space, i.e., s F b; for a unique i

Example: [c=1]-(2-x + 1) +[c#1] - x is in the above form,
and [x = 1]-x +[x = 2]y can be rewritten into it.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



Checking linear entailments [K., Mclver et al, SAS 2010]

|
For piecewise linear expectations:

f =1[bi]-ar+--+[bc]-ax and g = [c1]- e+ +[cm] em

it is decidable whether the quantitative entailment f E g holds

k m
f £ g if and only if /\ /\(b,- Ac) = aEeg is valid

formula in quantifier-free linear arithmetic

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



CEGIS for probabilistic invariants [Batz, K. et al, TACAS 2023]

CEGIS loop
| Template T l = b
N e |
Template Generator Synthesizer Verifier
T | S —
Unsat. hint? Counterexample s

I is inductive invariant v/

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



CEGIS for probabilistic invariants [Batz, K. et al, TACAS 2023]

CEGIS loop
| Template T l = b
N e |
Template Generator Synthesizer Verifier
T | S —
Unsat. hint? Counterexample s

I is inductive invariant v/

P For finite-state programs, synthesis is sound and complete
P Applicable to lower bounds: UPAST and difference boundedness

» Uses SMT with QF-LRA (the synthesiser) and QF-LIRA (the verifier)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button.



CEGIS for probabilistic invariants [Batz, K. et al, TACAS 2023]

CEGIS loop
| Template T l = b
N e |
Template Generator Synthesizer Verifier
T | S —
Unsat. hint? Counterexample s

I is inductive invariant v/

P For finite-state programs, synthesis is sound and complete
P Applicable to lower bounds: UPAST and difference boundedness

» Uses SMT with QF-LRA (the synthesiser) and QF-LIRA (the verifier)

CEGISPRO?2 tool: https://github.com/moves-rwth/cegispro2
chedk & ouk !
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Automation

Experiments Goreporison To CRrnponson to o
rodel én:c\:}n& ML Eedanique

MO/TO e .

éooo cmmes 7 MO/TO 4o

1000 ] 200 14 ¢
< 100 &, ‘
&z 100 & oo [
O 20 g g LI TV
= ? 2
n S €2

o 1
I

R N A v R 2
\A —_
CEGISPRO2 5 CEGISPRO2 2

Synthesis of upper bounds
for finite-state programs
TO = 2h, MO = 8GB

Synthesis of lower bounds
TO = 5min
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Outlook: a probabilistic Dafny? Kﬁ)’?

expected run-times partial correctness expected resource consumption
martingales positive almost-sure termination almost-sure terminatioxn
amortised analysis Park induction conditional expected values
total correctness k-induction probabilistic sensitivity

¥

Quantitative Intermediate Verification Language (HeyVL)

2

VC Generator M Real-valued Logic (HeyLo) M SMT Solver

Caesar: A verification infrastructure for probabilistic programs

e ck
"t out

caesarverifier.org
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Automation

A big thanks to my co-workers!

Ezio Kevin Mingshuai Sebastian Benjamin Laura Lutz
Bartocci Batz Chen Junges Kamingki Kovacs Klinkenberg

Christoph Annabelle Marcel Carroll Federico Philipp Tobias
Matheja Mclver Moosbrugger Morgan Olmedo Schroer Winkler
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