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Course Outline

An Introduction to computer-aided specification and verification

1 Basic logic: Propositional logic, Equational logic, First-order logic

2 Logic in PVS: Theories, Definitions, Arithmetic, Subtypes,
Dependent types

3 Advanced specification and verification with PVS
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What is PVS?

PVS (Prototype Verification System): A mechanized
framework for specification and verification.

Developed over the last three decades (since 1990) at the SRI
International Computer Science Laboratory, PVS includes

A specification language based on higher-order logic
A proof checker based on the sequent calculus that combines
automation (decision procedures), interaction, and
customization (strategies).

The primary goal of the course is to teach the effective use of
logic in specification and proof construction through PVS.
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PVS Libraries (NASAlib)

Theorem Author
Cauchy-Schwarz Inequality Ricky Butler
Derivative of a Power Series Ricky Butler
Fundamental Theorem of Arithmetic Ricky Butler
Fundamental Theorem of Calculus Ricky Butler
Fundamental Theorem of Interval Arithmetic César Muñoz, A. Narkawicz
Inclusion Theorem of Interval Arithmetic César Muñoz, A. Narkawicz
Infinitude of Primes Ricky Butler
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PVS Libraries (NASAlib; Very old list)

Theorem Author
Integral of a Power Series Ricky Butler
Intermediate Value Theorem Bruno Dutertre
Law of Cosines César Muñoz
Mean Value Theorem Bruno Dutertre
Mantel’s Theorem Aaron Dutle
Menger’s Theorem Jon Sjogren
Order of a Subgroup David Lester
Pythagorean Property - Sine and Cosine David Lester
Ramsey’s Theorem N. Shankar
Sum of a Geometric Series Ricky Butler
Taylor’s Theorem Ricky Butler
Trig Identities: Sum and Diff of Two Angles David Lester
Trig Identities: Double Angle Formulas David Lester
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PVS Libraries (NASAlib; Very old list)

Theorem Author
Schroeder-Bernstein Theorem Jerry James
Denumerability of the Rational Numbers Jerry James
Heine Theorem and Multiary Variants Anthony Narkawicz
Fubini-Tonelli Lemmas David Lester
Knuth-Bendix Critical Pair Theorem André Galdino, Mauricio Ayala
Church-Rosser Theorem André Galdino, Mauricio Ayala
Newman Lemma André Galdino, Mauricio Ayala
Yokouchi Lemma André Galdino, Mauricio Ayala
Robinson Unification Andreia Avelar, Maurcio Ayala
Confluence of Orthogonal TRSs Ana Rocha, Mauricio Ayala
Sturm’s Theorem Anthony Narkawicz
Tarski’s Theorem Anthony Narkawicz, Aaron Dutle
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PVS Libraries

ACCoRD ASP Bernstein CCG
LTL MetiTarski ODEs PVS0
PVSioChecker Riemann Sturm TRS
TU Games Tarski affine arith algebra analysis
aviation co structures complex complex alt
complex integration dL digraphs exact real arith
extended nnreal fast approx fault tolerance float
graphs interval arith ints lebesgue
line segments linear algebra lnexp matrices
measure integration metric space mult poly mv analysis
nominal numbers orders polygon merge
polygons power probability reals
scott series sets aux shapes
sigma set sorting structures topology
trig vect analysis vectors while
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Some PVS Background

A PVS theory is a list of declarations.

Declarations introduce names for types, constants, variables,
or formulas.

Propositional connectives are declared in theory booleans.

Type bool contains constants TRUE and FALSE.

Type [bool -> bool] is a function type where the domain
and range types are bool.

The PVS syntax allows certain prespecified infix operators.
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More PVS Background

Information/documentation about PVS is available at
http://pvs.csl.sri.com.

If you’re familiar with VSCode, you can get PVS from the
VSCode Marketplace:
https://marketplace.visualstudio.com/items?

itemName=paolomasci.vscode-pvs.

PVS can also be used from within Emacs.

The PVS Emacs command M-x pvs-help lists all the PVS
Emacs commands.

In addition to core PVS, you will want to gain some familiarity
with some important add-ons developed by NASA
(https://shemesh.larc.nasa.gov/fm/pvs/) such as
PVSio, ProofLite, Field, and Manip.
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Propositional Logic in PVS

booleans: THEORY

BEGIN

boolean: NONEMPTY_TYPE

bool: NONEMPTY_TYPE = boolean

FALSE, TRUE: bool

NOT: [bool -> bool]

AND, &, OR, IMPLIES, =>, WHEN, IFF, <=>

: [bool, bool -> bool]

END booleans

AND and & are synonymous and infix.
IMPLIES and => are synonymous and infix.
A WHEN B is just B IMPLIES A.
IFF and <=> are synonymous and infix.
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Propositional Proofs in PVS

prop_logic : THEORY

BEGIN

A, B, C, D: bool

ex1: LEMMA A IMPLIES (B OR A)

ex2: LEMMA (A AND (A IMPLIES B)) IMPLIES B

ex3: LEMMA

((A IMPLIES B) IMPLIES A) IMPLIES (B IMPLIES (B AND A))

END prop_logic

A, B, C, D are arbitrary Boolean constants.
ex1, ex2, and ex3 are LEMMA declarations.
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Propositional Proofs in PVS.

ex1 :

|-------

{1} A IMPLIES (B OR A)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

Q.E.D.

PVS proof commands are applied at the Rule? prompt, and
generate zero or more premises from conclusion sequents.
Command (flatten) applies the disjunctive rules: ` ∨, ` ¬, `⊃,
∧ `, ¬ `.

N. Shankar Specification and Proof with PVS 12/173



Propositional Proofs in PVS

ex2 :

|-------

{1} (A AND (A IMPLIES B)) IMPLIES B

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

ex2 :

{-1} A

{-2} (A IMPLIES B)

|-------

{1} B

Rule? (split)

Splitting conjunctions,

this yields 2 subgoals:
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Propositional Proof (continued)

ex2.1 :

{-1} B

[-2] A

|-------

[1] B

which is trivially true.

This completes the proof of ex2.1.

PVS sequents consist of a list of (negative) antecedents and a list
of (positive) consequents.
{-1} indicates that this sequent formula is new.
(split) applies the conjunctive rules ` ∧, ∨ `, ⊃`.
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Propositional Proof (continued)

ex2.2 :

[-1] A

|-------

{1} A

[2] B

which is trivially true.

This completes the proof of ex2.2.

Q.E.D.

Propositional axioms are automatically discharged.
flatten and split can also be applied to selected sequent
formulas by giving suitable arguments.
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The PVS Strategy Language

A simple language is used for defining proof strategies:

try for backtracking
if for conditional strategies
let for invoking Lisp
Recursion

prop$ is the non-atomic (expansive) version of prop.

(defstep prop ()

(try (flatten) (prop$) (try (split)(prop$) (skip)))

"A black-box rule for propositional simplification."

"Applying propositional simplification")
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Propositional Proofs Using Strategies

ex2 :

|-------

{1} (A AND (A IMPLIES B)) IMPLIES B

Rule? (prop)

Applying propositional simplification,

Q.E.D.

(prop) is an atomic application of a compound proof step.
(prop) can generate subgoals when applied to a sequent that is
not propositionally valid.
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Using BDDs for Propositional Simplification

Built-in proof command for propositional simplification with
binary decision diagrams (BDDs).

ex2 :

|-------

{1} (A AND (A IMPLIES B)) IMPLIES B

Rule? (bddsimp)

Applying bddsimp,

this simplifies to:

Q.E.D.

BDDs will be explained in a later lecture.
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Cut in PVS

ex3 :

|-------

{1} ((A IMPLIES B) IMPLIES A) IMPLIES (B IMPLIES (B AND A))

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

ex3 :

{-1} ((A IMPLIES B) IMPLIES A)

{-2} B

|-------

{1} (B AND A)
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Cut in PVS

Rule? (case "A")

Case splitting on

A,

this yields 2 subgoals:

ex3.1 :

{-1} A

[-2] ((A IMPLIES B) IMPLIES A)

[-3] B

|-------

[1] (B AND A)

Rule? (prop)

Applying propositional simplification,

This completes the proof of ex3.1.
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Cut in PVS

ex3.2 :

[-1] ((A IMPLIES B) IMPLIES A)

[-2] B

|-------

{1} A

[2] (B AND A)

Rule? (prop)

Applying propositional simplification,

This completes the proof of ex3.2.

Q.E.D.

(case "A") corresponds to the Cut rule.
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Propositional Simplification

ex4 :

|-------

{1} ((A IMPLIES B) IMPLIES A) IMPLIES (B AND A)

Rule? (prop)

Applying propositional simplification,

this yields 2 subgoals:

ex4.1 :

{-1} A

|-------

{1} B

(prop) generates subgoal sequents when applied to a sequent that
is not propositionally valid.
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Propositional Simplification with BDDs

ex4 :

|-------

{1} ((A IMPLIES B) IMPLIES A) IMPLIES (B AND A)

Rule? (bddsimp)

Applying bddsimp,

this simplifies to:

ex4 :

{-1} A

|-------

{1} B

Notice that bddsimp is more efficient.
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Equality in PVS

equalities [T: TYPE]: THEORY

BEGIN

=: [T, T -> boolean]

END equalities

Predicates are functions with range type boolean.
Theories can be parametric with respect to types and constants.
Equality is a parametric predicate.
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Proving Equality in PVS

eq : THEORY

BEGIN

T : TYPE

a : T

f : [T -> T]

ex1: LEMMA f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

END eq

ex1 is the same example in PVS.
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Proving Equality in PVS

ex1 :

|-------

{1} f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

ex1 :

{-1} f(f(f(a))) = f(a)

|-------

{1} f(f(f(f(f(a))))) = f(a)
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Proving Equality in PVS

Rule? (replace -1)

Replacing using formula -1,

this simplifies to:

ex1 :

[-1] f(f(f(a))) = f(a)

|-------

{1} f(f(f(a))) = f(a)

which is trivially true.

Q.E.D.

(replace -1) replaces the left-hand side of the chosen equality
by the right-hand side in the chosen sequent.
The range and direction of the replacement can be controlled
through arguments to replace.

N. Shankar Specification and Proof with PVS 27/173



Proving Equality in PVS

ex1 :

|-------

{1} f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

Rule? (flatten)

Applying disjunctive simplification to flatten sequent,

this simplifies to:

ex1 :

{-1} f(f(f(a))) = f(a)

|-------

{1} f(f(f(f(f(a))))) = f(a)

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.
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A Strategy for Equality

(defstep ground ()

(try (flatten)(ground$)(try (split)(ground$)(assert)))

"Does propositional simplification followed by the use of

decision procedures."

"Applying propositional simplification and decision procedures")

ex1 :

|-------

{1} f(f(f(a))) = f(a) IMPLIES f(f(f(f(f(a))))) = f(a)

Rule? (ground)

Applying propositional simplification and decision procedures,

Q.E.D.
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Exercises

1 Prove: If Bob is Joe’s father’s father, Andrew is Jim’s father’s
father, and Joe is Jim’s father, then prove that Bob is
Andrew’s father.

2 Prove f (f (f (x))) = x , x = f (f (x)) ` f (x) = x .

3 Prove f (g(f (x))) = x , x = f (x) ` f (g(f (g(f (g(x)))))) = x .

4 Show that the proof system for equational logic is sound,
complete, and decidable.

5 What happens when everybody loves my baby, but my baby
loves nobody but me?
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First-Order Logic in PVS: Overview

We next examine proof construction with conditionals,
quantifiers, theories, definitions, and lemmas.

We also explore the use of types in PVS, including predicate
subtypes and dependent types.
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Conditionals in PVS

if_def [T: TYPE]: THEORY

BEGIN

IF:[boolean, T, T -> T]

END if_def

PVS uses a mixfix syntax for conditional expressions

IF A THEN M ELSE N ENDIF
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PVS Proofs with Conditionals

conditionals : THEORY

BEGIN

A, B, C, D: bool

T : TYPE+

K, L, M, N : T

IF_true: LEMMA IF TRUE THEN M ELSE N ENDIF = M

IF_false: LEMMA IF FALSE THEN M ELSE N ENDIF = N
.
.
.

END conditionals
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PVS Proofs with Conditionals

IF_true :

|-------

{1} IF TRUE THEN M ELSE N ENDIF = M

Rule? (lift-if)

Lifting IF-conditions to the top level,

this simplifies to:

IF_true :

|-------

{1} TRUE

which is trivially true.

Q.E.D.
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PVS Proofs with Conditionals

IF_false :

|-------

{1} IF FALSE THEN M ELSE N ENDIF = N

Rule? (lift-if)

Lifting IF-conditions to the top level,

this simplifies to:

IF_false :

|-------

{1} TRUE

which is trivially true.

Q.E.D.
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PVS Proofs with Conditionals

conditionals : THEORY

BEGIN
.
.
.

IF_distrib: LEMMA (IF (IF A THEN B ELSE C ENDIF)

THEN M

ELSE N

ENDIF)

= (IF A

THEN (IF B THEN M ELSE N ENDIF)

ELSIF C

THEN M

ELSE N

ENDIF)

END conditionals
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PVS Proofs with Conditionals

IF_distrib :

|-------

{1} (IF (IF A THEN B ELSE C ENDIF) THEN M ELSE N ENDIF) =

(IF A THEN (IF B THEN M ELSE N ENDIF)

ELSIF C THEN M ELSE N ENDIF)

Rule? (lift-if)

Lifting IF-conditions to the top level,

this simplifies to:

IF_distrib :

|-------

{1} TRUE

which is trivially true.

Q.E.D.
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PVS Proofs with Conditionals

IF_test :

|-------

{1} IF A THEN (IF B THEN M ELSE N ENDIF)

ELSIF C THEN N ELSE M ENDIF =

IF A THEN M ELSE N ENDIF

Rule? (lift-if)

Lifting IF-conditions to the top level,

this simplifies to:

IF_test :

|-------

{1} IF A

THEN IF B THEN TRUE ELSE N = M ENDIF

ELSE IF C THEN TRUE ELSE M = N ENDIF

ENDIF
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Exercises

1 Prove
IF(IF(A,B,C ),M,N) = IF(A, IF(B,M,N), IF(C ,M,N)).

2 Prove that conditional expressions with the boolean constants
TRUE and FALSE are a complete set of boolean connectives.

3 A conditional expression is normal if all the first (test)
arguments of any conditional subexpression are variables.
Write a program to convert a conditional expression into an
equivalent one in normal form.
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Quantifiers in PVS

quantifiers : THEORY

BEGIN

T: TYPE

P: [T -> bool]

Q: [T, T -> bool]

x, y, z: VAR T

ex1: LEMMA FORALL x: EXISTS y: x = y

ex2: CONJECTURE (FORALL x: P(x)) IMPLIES (EXISTS x: P(x))

ex3: LEMMA

(EXISTS x: (FORALL y: Q(x, y)))

IMPLIES (FORALL y: EXISTS x: Q(x, y))

END quantifiers
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Quantifier Proofs in PVS

ex1 :

|-------

{1} FORALL x: EXISTS y: x = y

Rule? (skolem * "x")

For the top quantifier in *, we introduce Skolem constants: x,

this simplifies to:

ex1 :

|-------

{1} EXISTS y: x = y

Rule? (inst * "x")

Instantiating the top quantifier in * with the terms:

x,

Q.E.D.
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A Strategy for Quantifier Proofs

ex1 :

|-------

{1} FORALL x: EXISTS y: x = y

Rule? (skolem!)

Skolemizing,

this simplifies to:

ex1 :

|-------

{1} EXISTS y: x!1 = y

Rule? (inst?)

Found substitution: y gets x!1,

Using template: y

Instantiating quantified variables,

Q.E.D.
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Alternative Quantifier Proofs

ex1 :

|-------

{1} FORALL x: EXISTS y: x = y

Rule? (skolem!)

Skolemizing, this simplifies to:

ex1 :

|-------

{1} EXISTS y: x!1 = y

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.
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Alternative Quantifier Proofs

ex3 :

|-------

{1} (EXISTS x: (FORALL y: Q(x, y)))

IMPLIES (FORALL y: EXISTS x: Q(x, y))

Rule? (reduce)

Repeatedly simplifying with decision procedures, rewriting,

propositional reasoning, quantifier instantiation, skolemization,

if-lifting and equality replacement,

Q.E.D.

N. Shankar Specification and Proof with PVS 44/173



Summary

We have seen a formal language for writing propositional,
equational, and conditional expressions, and proof commands:

Propositional: flatten, split, case, prop, bddsimp.

Equational: replace, assert.

Conditional: lift-if.

Quantifier: skolem, skolem!, inst, inst?.

Strategies: ground, reduce
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Formalization Using PVS: Theories

group : THEORY

BEGIN

T: TYPE+

x, y, z: VAR T

id : T

* : [T, T -> T]

associativity: AXIOM (x * y) * z = x * (y * z)

identity: AXIOM x * id = x

inverse: AXIOM EXISTS y: x * y = id

left_identity: LEMMA EXISTS z: z * x = id

square(x): T = x * x

square_id: LEMMA square(id) = id

END group

Free variables are implicitly universally quantified.
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Parametric Theories

pgroup [T: TYPE+, * : [T, T -> T], id: T ] : THEORY

BEGIN

ASSUMING

x, y, z: VAR T

associativity: ASSUMPTION (x * y) * z = x * (y * z)

identity: ASSUMPTION x * id = x

inverse: ASSUMPTION EXISTS y: x * y = id

ENDASSUMING

left_identity: LEMMA EXISTS z: z * x = id

END pgroup
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Exercises

1 Prove (∀x : p(x)) ⊃ (∃x : p(x)).

2 Define equivalence. Prove the associativity of equivalence.

3 Prove ¬(∀x : p(x)) ⇐⇒ (∃x : ¬p(x)).

4 Prove
(∃x : ∀y : p(x) ⇐⇒ p(y)) ⇐⇒ (∃x : p(x)) ⇐⇒ (∀y : p(y)).

5 Give at least two satisfying interpretations for the statement
(∃x : p(x)) ⊃ (∀x : p(x)).

6 Write a formula asserting the unique existence of an x such that
p(x).

7 Show that any quantified formula is equivalent to one in prenex

normal form, i.e., where the only quantifiers appear at the head of

the formula.
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Using Theories

We can build a theory of commutative groups by using IMPORTING

group.

commutative_group : THEORY

BEGIN

IMPORTING group

x, y, z: VAR T

commutativity: AXIOM x * y = y * x

END commutative_group

The declarations in group are visible within commutative group,
and in any theory importing commutative group.
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Using Parametric Theories

To obtain an instance of pgroup for the additive group over the
real numbers:

additive_real : THEORY

BEGIN

IMPORTING pgroup[real, +, 0]

END additive_real
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Proof Obligations from IMPORTING

IMPORTING pgroup[real, +, 0] when typechecked, generates
proof obligations corresponding to the ASSUMINGs:

IMP_pgroup_TCC1: OBLIGATION

FORALL (x, y, z: real): (x + y) + z = x + (y + z);

IMP_pgroup_TCC2: OBLIGATION FORALL (x: real): x + 0 = x;

IMP_pgroup_TCC3: OBLIGATION

FORALL (x: real): EXISTS (y: real): x + y = 0;

The first two are proved automatically, but the last one needs an
interactive quantifier instantiation.
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Definitions

group : THEORY

BEGIN

T: TYPE+

x, y, z: VAR T

id : T

* : [T, T -> T]
.
.
.

square(x): T = x * x

.

.

.

END group

Type T, constants id and * are declared; square is defined.
Definitions are conservative, i.e., preserve consistency.
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Using Definitions

Definitions are treated like axioms.

We examine several ways of using definitions and axioms in
proving the lemma:

square id: LEMMA square(id) = id
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Proofs with Definitions

square id :

|-------

{1} square(id) = id

Rule? (lemma "square")

Applying square

this simplifies to:

square id :

{-1} square = (LAMBDA (x): x * x)

|-------

[1] square(id) = id

N. Shankar Specification and Proof with PVS 54/173



Proving with Definitions

square_id :

|-------

{1} square(id) = id

Rule? (lemma "square" ("x" "id"))

Applying square where

x gets id,

this simplifies to:

square_id :

{-1} square(id) = id * id

|-------

[1] square(id) = id

The lemma step brings in the specified instance of the lemma as an
antecedent formula.
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Proving with Definitions

Rule? (replace -1)

Replacing using formula -1,

this simplifies to:

square_id :

[-1] square(id) = id * id

|-------

{1} id * id = id

Rule? (lemma "identity")

Applying identity

this simplifies to:
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Proving with Definitions

square_id :

{-1} FORALL (x: T): x * id = x

[-2] square(id) = id * id

|-------

[1] id * id = id

Rule? (inst?)

Found substitution:

x: T gets id,

Using template: x * id = x

Instantiating quantified variables,

Q.E.D.
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Proofs With Definitions and Lemmas

The lemma and inst? steps can be collapsed into a single use

command.

square_id :

[-1] square(id) = id * id

|-------

{1} id * id = id

Rule? (use "identity")

Using lemma identity,

Q.E.D.
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Proofs With Definitions

square_id :

|-------

{1} square(id) = id

Rule? (expand "square")

Expanding the definition of square,

this simplifies to:

square_id :

|-------

{1} id * id = id

(expand "square") expands definitions in place.
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Proofs With Definitions

.

.

.

Rule? (rewrite "identity")

Found matching substitution:

x: T gets id,

Rewriting using identity, matching in *,

Q.E.D.

(rewrite "identity") rewrites using a lemma that is a rewrite
rule.
A rewrite rule is of the form l = r or h ⊃ l = r where the free
variables in r and h are a subset of those in l . It rewrites an
instance σ(l) of l to σ(r) when σ(h) simplifies to TRUE.
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Rewriting with Lemmas and Definitions

square id :

|-------

{1} square(id) = id

Rule? (rewrite "square")

Found matching substitution: x gets id,

Rewriting using square, matching in *,

this simplifies to:

square id :

|-------

{1} id * id = id

Rule? (rewrite "identity")

Found matching substitution: x: T gets id,

Rewriting using identity, matching in *,

Q.E.D.
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Automatic Rewrite Rules

square id :

|-------

{1} square(id) = id

Rule? (auto-rewrite "square" "identity")

.

.

.

Installing automatic rewrites from:

square

identity

this simplifies to:
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Using Rewrite Rules Automatically

square id :

|-------

[1] square(id) = id

Rule? (assert)

identity rewrites id * id

to id

square rewrites square(id)

to id

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.
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Rewriting with Theories

square id :

|-------

{1} square(id) = id

Rule? (auto-rewrite-theory "group")

Rewriting relative to the theory: group,

this simplifies to:

square id :

|-------

[1] square(id) = id

Rule? (assert)

.

.

.

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.
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grind using Rewrite Rules

square id :

|-------

{1} square(id) = id

Rule? (grind :theories "group")

identity rewrites id * id

to id

square rewrites square(id)

to id

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.

grind is a complex strategy that sets up rewrite rules from
theories and definitions used in the goal sequent, and then applies
reduce to apply quantifier and simplification commands.

N. Shankar Specification and Proof with PVS 65/173



Numbers in PVS

All the examples so far used the type bool or an
uninterpreted type T .

Numbers are characterized by the types:

real: The type of real numbers with operations +, −, ∗, /.
rat: Rational numbers closed under +, −, ∗, /.
int: Integers closed under +, −, ∗.
nat: Natural numbers closed under +, ∗.
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Predicate Subtypes

A type judgement is of the form a : T for term a and type T .

PVS has a subtype relation on types.

Type S is a subtype of T if all the elements of S are also
elements of T .

The subtype of a type T consisting of those elements
satisfying a given predicate p is give by {x : T | p(x)}.
For example nat is defined as {i : int | i >= 0}, so nat

is a subtype of int.

int is also a subtype of rat which is a subtype of real.
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Type Correctness Conditions

All functions are taken to be total, i.e., f (a1, . . . , an) always
represents a valid element of the range type.

The division operation represents a challenge since it is
undefined for zero denominators.

With predicate subtyping, division can be typed to rule out
zero denominators.

nzreal: NONEMPTY_TYPE = {r: real | r /= 0} CONTAINING 1

/: [real, nzreal -> real]

nzreal is defined as the nonempty type of real consisting of
the non-zero elements. The witness 1 is given as evidence for
nonemptiness.
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Type Correctness Conditions

number_props : THEORY

BEGIN

x, y, z: VAR real

div1: CONJECTURE x /= y IMPLIES (x + y)/(x - y) /= 0

END number_props

Typechecking number props generates the proof obligation

% Subtype TCC generated (at line 6, column 44) for (x - y)

% proved - complete

div1_TCC1: OBLIGATION

FORALL (x, y: real): x /= y IMPLIES (x - y) /= 0;

Proof obligations arising from typechecking are called Type
Correctness Conditions (TCCs).
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Arithmetic Rewrite Rules

Using the refined type declarations

real_props: THEORY

BEGIN

w, x, y, z: VAR real

n0w, n0x, n0y, n0z: VAR nonzero_real

nnw, nnx, nny, nnz: VAR nonneg_real

pw, px, py, pz: VAR posreal

npw, npx, npy, npz: VAR nonpos_real

nw, nx, ny, nz: VAR negreal

.

.

.

END real_props

It is possible to capture very useful arithmetic simplifications
as rewrite rules.
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Arithmetic Rewrite Rules

both_sides_times1: LEMMA (x * n0z = y * n0z) IFF x = y

both_sides_div1: LEMMA (x/n0z = y/n0z) IFF x = y

div_cancel1: LEMMA n0z * (x/n0z) = x

div_mult_pos_lt1: LEMMA z/py < x IFF z < x * py

both_sides_times_neg_lt1: LEMMA x * nz < y * nz IFF y < x

Nonlinear simplifications can be quite difficult in the absence of
such rewrite rules.
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Arithmetic Typing Judgements

The + and * operations have the type [real, real ->

real].

Judgements can be used to give them more refined types —
especially useful for computing sign information for nonlinear
expressions.

px, py: VAR posreal

nnx, nny: VAR nonneg_real

nnreal_plus_nnreal_is_nnreal: JUDGEMENT

+(nnx, nny) HAS_TYPE nnreal

nnreal_times_nnreal_is_nnreal: JUDGEMENT

*(nnx, nny) HAS_TYPE nnreal

posreal_times_posreal_is_posreal: JUDGEMENT

*(px, py) HAS_TYPE posreal
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Subranges

The following parametric type definitions capture various
subranges of integers and natural numbers.

upfrom(i): NONEMPTY_TYPE = {s: int | s >= i} CONTAINING i

above(i): NONEMPTY_TYPE = {s: int | s > i} CONTAINING i + 1

subrange(i, j): TYPE = {k: int | i <= k AND k <= j}
upto(i): NONEMPTY_TYPE = {s: nat | s <= i} CONTAINING i

below(i): TYPE = {s: nat | s < i} % may be empty

Subrange types may be empty.
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Recursion and Induction: Overview

We have covered the basic logic formulated as a sequent
calculus, and its realization in terms of PVS proof commands.

We have examined types and specifications involving numbers.

We now examine richer datatypes such as sets, arrays, and
recursive datatypes.

The interplay between the rich type information and
deduction is especially crucial.

PVS is merely used as an aid for teaching effective
formalization. Similar ideas can be used in informal
developments or with other mechanizations.
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Recursive Definition

Many operations on integers and natural numbers are defined by
recursion.

summation: THEORY

BEGIN

i, m, n: VAR nat

sumn(n): RECURSIVE nat =

(IF n = 0 THEN 0 ELSE n + sumn(n - 1) ENDIF)

MEASURE n

sumn_prop: LEMMA

sumn(n) = (n*(n+1))/2

END summation
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Termination TCCs

A recursive definition must be well-founded or the function
might not be total, e.g., bad(x) = bad(x) + 1.

MEASURE m generates proof obligations ensuring that the
measure m of the recursive arguments decreases according to
a default well-founded relation given by the type of m.

MEASURE m BY r can be used to specify a well-founded
relation.

% Subtype TCC generated (at line 8, column 34) for n - 1

sumn_TCC1: OBLIGATION

FORALL (n: nat): NOT n = 0 IMPLIES n - 1 >= 0;

% Termination TCC generated (at line 8, column 29) for sumn

sumn_TCC2: OBLIGATION

FORALL (n: nat): NOT n = 0 IMPLIES n - 1 < n;
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Termination: Ackermann’s function

Proof obligations are also generated corresponding to the
termination conditions for nested recursive definitions.

ack(m,n): RECURSIVE nat =

(IF m=0 THEN n+1

ELSIF n=0 THEN ack(m-1,1)

ELSE ack(m-1, ack(m, n-1))

ENDIF)

MEASURE lex2(m, n)
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Termination: McCarthy’s 91-function

f91: THEORY

BEGIN

i, j: VAR nat

g91(i): nat = (IF i > 100 THEN i - 10 ELSE 91 ENDIF)

f91(i) : RECURSIVE {j | j = g91(i)}
= (IF i>100

THEN i-10

ELSE f91(f91(i+11))

ENDIF)

MEASURE (IF i>101 THEN 0 ELSE 101-i ENDIF)

END f91
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Proof by Induction

sumn_prop :

|-------

{1} FORALL (n: nat): sumn(n) = (n * (n + 1)) / 2

Rule? (induct "n")

Inducting on n on formula 1,

this yields 2 subgoals:

sumn_prop.1 :

|-------

{1} sumn(0) = (0 * (0 + 1)) / 2
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Proof by Induction

Rule? (expand "sumn")

Expanding the definition of sumn,

this simplifies to:

sumn_prop.1 :

|-------

{1} 0 = 0 / 2

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of sumn_prop.1.
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Proof by Induction

sumn_prop.2 :

|-------

{1} FORALL j:

sumn(j) = (j * (j + 1)) / 2 IMPLIES

sumn(j + 1) = ((j + 1) * (j + 1 + 1)) / 2

Rule? (skosimp)

Skolemizing and flattening,

this simplifies to:

sumn_prop.2 :

{-1} sumn(j!1) = (j!1 * (j!1 + 1)) / 2

|-------

{1} sumn(j!1 + 1) = ((j!1 + 1) * (j!1 + 1 + 1)) / 2
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Proof by Induction

Rule? (expand "sumn" +)

Expanding the definition of sumn,

this simplifies to:

sumn_prop.2 :

[-1] sumn(j!1) = (j!1 * (j!1 + 1)) / 2

|-------

{1} 1 + sumn(j!1) + j!1 = (2 + j!1 + (j!1 * j!1 + 2 * j!1)) / 2

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

This completes the proof of sumn_prop.2.

Q.E.D.
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An Induction/Simplification Strategy

sumn_prop :

|-------

{1} FORALL (n: nat): sumn(n) = (n * (n + 1)) / 2

Rule? (induct-and-simplify "n")

sumn rewrites sumn(0)

to 0

sumn rewrites sumn(1 + j!1)

to 1 + sumn(j!1) + j!1

By induction on n, and by repeatedly rewriting and simplifying,

Q.E.D.
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Summary

Variables allow general facts to be stated, proved, and
instantiated over interesting datatypes such as numbers.

Proof commands for quantifiers include skolem, skolem!,
skosimp, skosimp*, inst, inst?, reduce.

Proof commands for reasoning with definitions and lemmas
include lemma, expand, rewrite, auto-rewrite,
auto-rewrite-theory, assert, and grind.

Predicate subtypes with proof obligation generation allow
refined type definitions.

Commands for reasoning with numbers include induct,
assert, grind, induct-and-simplify.
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Exercise

1 Define an operations for extracting the quotient and
remainder of a natural number with respect to a nonzero
natural number, and prove its correctness.

2 Define an addition operation over two n-digit numbers over a
base b (b > 1) represented as arrays, and prove its
correctness.

3 Define a function for taking the greatest common divisor of
two natural numbers, and state and prove its correctness.

4 Prove the decidability of first-order logic over linear arithmetic
equalities and inequalities over the reals.
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Higher-Order Logic: Overview

Thus far, variables ranged over ordinary datatypes such as
numbers, and the functions and predicates were fixed
(constants).

Higher order logic allows free and bound variables to range
over functions and predicates as well.

This requires strong typing for consistency, otherwise, we
could define R(x) = ¬x(x), and derive R(R) = ¬R(R).

Higher order logic can express a number of interesting
concepts and datatypes that are not expressible within
first-order logic: transitive closure, fixpoints, finiteness, etc.
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Types in Higher Order Logic

Base types: bool, nat, real

Tuple types: [T1, . . . ,Tn] for types T1, . . . , Tn.

Tuple terms: (a1, . . . , an)

Projections: πi (a)

Function types: [T1→T2] for domain type T1 and range type
T2.

Lambda abstraction: λ(x : T1) : a

Function application: f a.
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Tuple and Function Expressions in PVS

Tuple type: [T 1,..., T n].

Tuple expression: (a 1,..., a n). (a) is identical to a.

Tuple projection: PROJ 3(a) or a‘3.

Function type: [T 1 -> T 2]. The type [[T 1, ..., T n]

-> T] can be written as [T 1, ..., T n -> T].

Lambda Abstraction: LAMBDA x, y, z: x * (y + z).

Function Application: f(a 1,..., a n)
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Induction in Higher Order Logic

Given pred : TYPE = [T -> bool]

p: VAR pred[nat]

nat_induction: LEMMA

(p(0) AND (FORALL j: p(j) IMPLIES p(j+1)))

IMPLIES (FORALL i: p(i))

nat induction is derived from well-founded induction, as are
other variants like structural recursion, measure induction.
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Higher-Order Specification: Functions

functions [D, R: TYPE]: THEORY

BEGIN

f, g: VAR [D -> R]

x, x1, x2: VAR D

extensionality_postulate: POSTULATE

(FORALL (x: D): f(x) = g(x)) IFF f = g

congruence: POSTULATE f = g AND x1 = x2 IMPLIES f(x1) = g(x2)

eta: LEMMA (LAMBDA (x: D): f(x)) = f

injective?(f): bool =

(FORALL x1, x2: (f(x1) = f(x2) => (x1 = x2)))

surjective?(f): bool = (FORALL y: (EXISTS x: f(x) = y))

bijective?(f): bool = injective?(f) & surjective?(f)

.

.

.

END functions
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Sets are Predicates

sets [T: TYPE]: THEORY

BEGIN

set: TYPE = [t -> bool]

x, y: VAR T

a, b, c: VAR set

member(x, a): bool = a(x)

empty?(a): bool = (FORALL x: NOT member(x, a))

emptyset: set = {x | false}

subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))

union(a, b): set = {x | member(x, a) OR member(x, b)}
.
.
.

END sets
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Deterministic and Nondeterministic Automata

The equivalence of deterministic and nondeterministic
automata through the subset construction is a basic theorem
in computing.

In higher-order logic, sets (over a type A) are defined as
predicates over A.

The set operations are defined as

member(x, a): bool = a(x)

emptyset: set = {x | false}
subset?(a, b): bool = (FORALL x: member(x, a) => member(x, b))

union(a, b): set = {x | member(x, a) OR member(x, b)}
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Image and Least Upper Bound

Given a function f from domain D to range R and a set X on
D, the image operation returns a set over R.

image(f, X): set[R] = {y: R | (EXISTS (x:(X)): y = f(x))}

Given a set of sets X of type T, the least upper bound is the
union of all the sets in X .

lub(setofpred): pred[T] =

LAMBDA s: EXISTS p: member(p,setofpred) AND p(s)
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Deterministic Automata

DFA [Sigma : TYPE,

state : TYPE,

start : state,

delta : [Sigma -> [state -> state]],

final? : set[state] ]

: THEORY

BEGIN

DELTA((string : list[Sigma]))((S : state)):

RECURSIVE state =

(CASES string OF

null : S,

cons(a, x): delta(a)(DELTA(x)(S))

ENDCASES)

MEASURE length(string)

DAccept?((string : list[Sigma])) : bool =

final?(DELTA(string)(start))

END DFA
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Nondeterministic Automata

NFA [Sigma : TYPE,

state : TYPE,

start : state,

ndelta : [Sigma -> [state -> set[state]]],

final? : set[state] ]

: THEORY

BEGIN

NDELTA((string : list[Sigma]))((s : state)) :

RECURSIVE set[state] =

(CASES string OF

null : singleton(s),

cons(a, x): lub(image(ndelta(a), NDELTA(x)(s)))

ENDCASES)

MEASURE length(string)

Accept?((string : list[Sigma])) : bool =

(EXISTS (r : (final?)) :

member(r, NDELTA(string)(start)))

END NFA
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DFA/NFA Equivalence

equiv[Sigma : TYPE,

state : TYPE,

start : state,

ndelta : [Sigma -> [state -> set[state]]],

final? : set[state] ]: THEORY

BEGIN

IMPORTING NFA[Sigma, state, start, ndelta, final?]

dstate: TYPE = set[state]

delta((symbol : Sigma))((S : dstate)): dstate =

lub(image(ndelta(symbol), S))

dfinal?((S : dstate)) : bool =

(EXISTS (r : (final?)) : member(r, S))

dstart : dstate = singleton(start)

.

.

.

END equiv
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DFA/NFA Equivalence

IMPORTING DFA[Sigma, dstate, dstart, delta, dfinal?]

main: LEMMA

(FORALL (x : list[Sigma]), (s : state):

NDELTA(x)(s) = DELTA(x)(singleton(s)))

equiv: THEOREM

(FORALL (string : list[Sigma]):

Accept?(string) IFF DAccept?(string))
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Tarski–Knaster Theorem

Tarski_Knaster [T : TYPE, <= : PRED[[T, T]], glb : [set[T] -> T] ]

: THEORY

BEGIN

ASSUMING

x, y, z: VAR T

X, Y, Z : VAR set[T]

f, g : VAR [T -> T]

antisymmetry: ASSUMPTION x <= y AND y <= x IMPLIES x = y

transitivity : ASSUMPTION x <= y AND y <= z IMPLIES x <= z

glb_is_lb: ASSUMPTION X(x) IMPLIES glb(X) <= x

glb_is_glb: ASSUMPTION

(FORALL x: X(x) IMPLIES y <= x) IMPLIES y <= glb(X)

ENDASSUMING
.
.
.
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Tarski–Knaster Theorem

.

.

.

mono?(f): bool = (FORALL x, y: x <= y IMPLIES f(x) <= f(y))

lfp(f) : T = glb({x | f(x) <= x})

TK1: THEOREM

mono?(f) IMPLIES

lfp(f) = f(lfp(f))

END Tarski_Knaster

Monotone operators on complete lattices have fixed points. The
fixed point defined above can be shown to be the least such fixed
point.
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Tarski–Knaster Proof

TK1 :

|-------

{1} FORALL (f: [T -> T]): mono?(f) IMPLIES lfp(f) = f(lfp(f))

Rule? (skosimp)

Skolemizing and flattening,

this simplifies to:

TK1 :

{-1} mono?(f!1)

|-------

1 lfp(f!1) = f!1(lfp(f!1))

Rule? (case "f!1(lfp(f!1)) <= lfp(f!1)")

Case splitting on f!1(lfp(f!1)) <= lfp(f!1),

this yields 2 subgoals:
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Tarski–Knaster Proof

TK1.1 :

{-1} f!1(lfp(f!1)) <= lfp(f!1)

[-2] mono?(f!1)

|-------

[1] lfp(f!1) = f!1(lfp(f!1))

Rule? (grind :theories "Tarski_Knaster")

lfp rewrites lfp(f!1)

to glb(x | f!1(x) <= x)

mono? rewrites mono?(f!1)

to FORALL x, y: x <= y IMPLIES f!1(x) <= f!1(y)

glb_is_lb rewrites glb(x | f!1(x) <= x) <= f!1(glb(x | f!1(x) <= x))

to TRUE

antisymmetry rewrites glb(x | f!1(x) <= x) = f!1(glb(x | f!1(x) <= x))

to TRUE

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of TK1.1.
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Tarski–Knaster Proof

TK1.2 :

[-1] mono?(f!1)

|-------

{1} f!1(lfp(f!1)) <= lfp(f!1)

[2] lfp(f!1) = f!1(lfp(f!1))

Rule? (grind :theories "Tarski_Knaster" :if-match nil)

lfp rewrites lfp(f!1)

to glb(x | f!1(x) <= x)

mono? rewrites mono?(f!1)

to FORALL x, y: x <= y IMPLIES f!1(x) <= f!1(y)

Trying repeated skolemization, instantiation, and if-lifting,

this simplifies to:
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Tarski–Knaster Proof

TK1.2 :

{-1} FORALL x, y: x <= y IMPLIES f!1(x) <= f!1(y)

|-------

{1} f!1(glb(x | f!1(x) <= x)) <= glb(x | f!1(x) <= x)

2 glb(x | f!1(x) <= x) = f!1(glb(x | f!1(x) <= x))

Rule? (rewrite "glb_is_glb")

Found matching substitution:

X: set[T] gets x | f!1(x) <= x,

y: T gets f!1(glb(x | f!1(x) <= x)),

Rewriting using glb_is_glb, matching in *,

this simplifies to:
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Tarski–Knaster Proof

TK1.2 :

[-1] FORALL x, y: x <= y IMPLIES f!1(x) <= f!1(y)

|-------

{1} FORALL (x_200: T):

f!1(x_200) <= x_200 IMPLIES f!1(glb(x | f!1(x) <= x)) <= x_200

[2] f!1(glb(x | f!1(x) <= x)) <= glb(x | f!1(x) <= x)

[3] glb(x | f!1(x) <= x) = f!1(glb(x | f!1(x) <= x))

Rule? (skosimp*)

Repeatedly Skolemizing and flattening,

this simplifies to:

TK1.2 :

{-1} f!1(x!1) <= x!1

[-2] FORALL x, y: x <= y IMPLIES f!1(x) <= f!1(y)

|-------

1 f!1(glb(x | f!1(x) <= x)) <= x!1

[2] f!1(glb(x | f!1(x) <= x)) <= glb(x | f!1(x) <= x)

[3] glb(x | f!1(x) <= x) = f!1(glb(x | f!1(x) <= x))

Rule? (rewrite "transitivity" + :subst ("y" "f!1(x!1)"))

Found matching substitution:

z: T gets x!1,

x gets f!1(glb(x | f!1(x) <= x)),

y gets f!1(x!1),

Rewriting using transitivity, matching in + where

y gets f!1(x!1),

this simplifies to:

TK1.2 :

[-1] f!1(x!1) <= x!1

[-2] FORALL x, y: x <= y IMPLIES f!1(x) <= f!1(y)

|-------

{1} f!1(glb(x | f!1(x) <= x)) <= f!1(x!1)

[2] f!1(glb(x | f!1(x) <= x)) <= x!1

[3] f!1(glb(x | f!1(x) <= x)) <= glb(x | f!1(x) <= x)

[4] glb(x | f!1(x) <= x) = f!1(glb(x | f!1(x) <= x))

Rule? (grind :theories "Tarski_Knaster")

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of TK1.2.

Q.E.D.
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Continuation-Based Program Transformation

wand [dom, rng: TYPE, %function domain, range

a: [dom -> rng], %base case function

d: [dom-> rng], %recursion parameter

b: [rng, rng -> rng],%continuation builder

c: [dom -> dom], %recursion destructor

p: PRED[dom], %branch predicate

m: [dom -> nat], %termination measure

F : [dom -> rng]] %tail-recursive function

: THEORY

BEGIN
.
.
.

END wand
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Continuation-Based Program Transformation (contd.)

ASSUMING %3 assumptions: b associative,

% c decreases measure, and

% F defined recursively

% using p, a, b, c, d.

u, v, w: VAR rng

assoc: ASSUMPTION b(b(u, v), w) = b(u, b(v, w))

x, y, z: VAR dom

wf : ASSUMPTION NOT p(x) IMPLIES m(c(x)) < m(x)

F_def: ASSUMPTION

F(x) =

(IF p(x) THEN a(x) ELSE b(F(c(x)), d(x)) ENDIF)

ENDASSUMING
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Continuation-Based Program Transformation (contd.)

f: VAR [rng -> rng]

%FC is F redefined with explicit continuation f.

FC(x, f) : RECURSIVE rng =

(IF p(x)

THEN f(a(x))

ELSE FC(c(x), (LAMBDA u: f(b(u, d(x)))))

ENDIF)

MEASURE m(x)

%FFC is main invariant relating FC and F.

FFC: LEMMA FC(x, f) = f(F(x))

%FA is FC with accumulator replacing continuation.

FA(x, u): RECURSIVE rng =

(IF p(x)

THEN b(a(x), u)

ELSE FA(c(x), b(d(x), u)) ENDIF)

MEASURE m(x)

%Main invariant relating FA and FC.

FAFC: LEMMA FA(x, u) = FC(x, (LAMBDA w: b(w, u)))
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Useful Higher Order Datatypes: Finite Sets

Finite sets: Predicate subtypes of sets that have an injective map
to some initial segment of nat.

finite_sets_def[T: TYPE]: THEORY

BEGIN

x, y, z: VAR T

S: VAR set[T]

N: VAR nat

is_finite(S): bool = (EXISTS N, (f: [(S) -> below[N]]):

injective?(f))

finite_set: TYPE = (is_finite) CONTAINING emptyset[T]

.

.

.

END finite_sets_def
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Useful Higher Order Datatypes: Sequences

sequences[T: TYPE]: THEORY

BEGIN

sequence: TYPE = [nat->T]

i, n: VAR nat

x: VAR T

p: VAR pred[T]

seq: VAR sequence

nth(seq, n): T = seq(n)

suffix(seq, n): sequence =

(LAMBDA i: seq(i+n))

delete(n, seq): sequence =

(LAMBDA i: (IF i < n THEN seq(i) ELSE seq(i + 1) ENDIF))

.

.

.

END sequences
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Arrays

Arrays are just functions over a subrange type.

An array of size N over element type T can be defined as

INDEX: TYPE = below(N)

ARR: TYPE = ARRAY[INDEX -> T]

The k’th element of an array A is accessed as A(k-1).

Out of bounds array accesses generate unprovable proof
obligations.
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Function and Array Updates

Updates are a distinctive feature of the PVS language.

The update expression f WITH [(a) := v] (loosely
speaking) denotes the function (LAMBDA i: IF i = a

THEN v ELSE f(i) ENDIF).

Nested update f WITH [(a 1)(a 2) := v] corresponds to f

WITH [(a 1) := f(a 1) WITH [(a 2) := v]].

Simultaneous update f WITH [(a 1) := v 1, (a 2) :=

v 2] corresponds to (f WITH [(a 1) := v 1]) WITH

[(a 2) := v 2].

Arrays can be updated as functions. Out of bounds updates
yield unprovable TCCs.
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Record Types

Record types: [#l1 : T1, . . . ln : Tn#], where the li are labels
and Ti are types.

Records are a variant of tuples that provided labelled access
instead of numbered access.

Record access: l(r) or r‘l for label l and record expression
r.

Record updates: r WITH [‘l := v] represents a copy of
record r where label l has the value v.
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Proofs with Updates

array_record : THEORY

BEGIN

ARR: TYPE = ARRAY[below(5) -> nat]

rec: TYPE = [# a : below(5), b : ARR #]

r, s, t: VAR rec

test: LEMMA r WITH [‘b(r‘a) := 3, ‘a := 4] =

(r WITH [‘a := 4]) WITH [‘b(r‘a) := 3]

test2: LEMMA r WITH [‘b(r‘a) := 3, ‘a := 4] =

(# a := 4, b := (r‘b WITH [(r‘a) := 3]) #)

END array_record
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Proofs with Updates

test :

|-------

{1} FORALL (r: rec):

r WITH [(b)(r‘a) := 3, (a) := 4] =

(r WITH [(a) := 4]) WITH [(b)(r‘a) := 3]

Rule? (assert)

Simplifying, rewriting, and recording with decision procedures,

Q.E.D.
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Proofs with Updates

test2 :

|-------

{1} FORALL (r: rec):

r WITH [(b)(r‘a) := 3, (a) := 4] =

(# a := 4, b := (r‘b WITH [(r‘a) := 3]) #)

Rule? (skolem!)

Skolemizing,

this simplifies to:
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Proofs with Updates

test2 :

|-------

{1} r!1 WITH [(b)(r!1‘a) := 3, (a) := 4] =

(# a := 4, b := (r!1‘b WITH [(r!1‘a) := 3]) #)

Rule? (apply-extensionality)

Applying extensionality,

Q.E.D.
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Dependent Types

Dependent records have the form
[#l1 : T1, l2 : T2(l1), . . . , ln : TN(l1, . . . , ln−1)#].

finite_sequences [T: TYPE]: THEORY

BEGIN

finite_sequence: TYPE

= [# length: nat, seq: [below[length] -> T] #]

END finite_sequences

Dependent function types have the form [x : T1→T2(x)]

abs(m): {n: nonneg_real | n >= m}
= IF m < 0 THEN -m ELSE m ENDIF
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Summary

Higher order variables and quantification admit the definition
of a number of interesting concepts and datatypes.

We have given higher-order definitions for functions, sets,
sequences, finite sets, arrays.

Dependent typing combines nicely with predicate subtyping as
in finite sequences.

Record and function updates are powerful operations.
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Recursive Datatypes: Overview

Recursive datatypes like lists, stacks, queues, binary trees, leaf
trees, and abstract syntax trees, are commonly used in
specification.

Manual axiomatizations for datatypes can be error-prone.

Verification system should (and many do) automatically
generate datatype theories.

The PVS DATATYPE construct introduces recursive datatypes
that are freely generated by given constructors, including lists,
binary trees, abstract syntax trees, but excluding bags and
queues.

The PVS proof checker automates various datatype
simplifications.
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Lists and Recursive Datatypes

A list datatype with constructors null and cons is declared as

list [T: TYPE]: DATATYPE

BEGIN

null: null?

cons (car: T, cdr:list):cons?

END list

The accessors for cons are car and cdr.

The recognizers are null? for null and cons? for
cons-terms.

The declaration generates a family of theories with the
datatype axioms, induction principles, and some useful
definitions.
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Introducing PVS: Number Representation

bignum [ base : above(1) ] : THEORY

BEGIN

l, m, n: VAR nat

cin : VAR upto(1)

digit : TYPE = below(base)

JUDGEMENT 1 HAS_TYPE digit

i, j, k: VAR digit

bignum : TYPE = list[digit]

X, Y, Z, X1, Y1: VAR bignum

val(X) : RECURSIVE nat =

CASES X of

null: 0,

cons(i, Y): i + base * val(Y)

ENDCASES

MEASURE length(X);
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Adding a Digit to a Number

+(X, i): RECURSIVE bignum =

(CASES X of

null: cons(i, null),

cons(j, Y):

(IF i + j < base

THEN cons(i+j, Y)

ELSE cons(i + j - base, Y + 1)

ENDIF)

ENDCASES)

MEASURE length(X);

correct_plus: LEMMA

val(X + i) = val(X) + i
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Adding Two Numbers

bigplus(X, Y, (cin : upto(1))): RECURSIVE bignum =

CASES X of

null: Y + cin,

cons(j, X1):

CASES Y of

null: X + cin,

cons(k, Y1):

(IF cin + j + k < base

THEN cons((cin + j + k - base),

bigplus(X1, Y1, 1))

ELSE cons((cin + j + k), bigplus(X1, Y1, 0))

ENDIF)

ENDCASES

ENDCASES

MEASURE length(X)

bigplus_correct: LEMMA

val(bigplus(X, Y, cin)) = val(X) + val(Y) + cin
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Binary Trees

Parametic in value type T.

Constructors: leaf and node.

Recognizers: leaf? and node?.

node accessors: val, left, and right.

binary_tree[T : TYPE] : DATATYPE

BEGIN

leaf : leaf?

node(val : T, left : binary_tree, right : binary_tree) : node?

END binary_tree
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Theories Axiomatizing Binary Trees

The binary tree declaration generates three theories
axiomatizing the binary tree data structure:

binary tree adt: Declares the constructors, accessors, and
recognizers, and contains the basic axioms for extensionality
and induction, and some basic operators.
binary tree adt map: Defines map operations over the
datatype.
binary tree adt reduce: Defines an recursion scheme over
the datatype.

Datatype axioms are already built into the relevant proof
rules, but the defined operations are useful.
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Basic Binary Tree Theory

binary_tree_adt[T: TYPE]: THEORY

BEGIN

binary_tree: TYPE

leaf?, node?: [binary_tree -> boolean]

leaf: (leaf?)

node: [[T, binary_tree, binary_tree] -> (node?)]

val: [(node?) -> T]

left: [(node?) -> binary_tree]

right: [(node?) -> binary_tree]

.

.

.

END binary_tree_adt

Predicate subtyping is used to precisely type constructor terms and
avoid misapplied accessors.
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An Extensionality Axiom per Constructor

Extensionality states that a node is uniquely determined by its
accessor fields.

binary_tree_node_extensionality: AXIOM

(FORALL (node?_var: (node?)),

(node?_var2: (node?)):

val(node?_var) = val(node?_var2)

AND left(node?_var) = left(node?_var2)

AND right(node?_var) = right(node?_var2)

IMPLIES node?_var = node?_var2)
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Accessor/Constructor Axioms

Asserts that val(node(v, A, B)) = v.

binary_tree_val_node: AXIOM

(FORALL (node1_var: T), (node2_var: binary_tree),

(node3_var: binary_tree):

val(node(node1_var, node2_var, node3_var)) = node1_var)
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An Induction Axiom

Conclude FORALL A: p(A) from p(leaf) and
p(A) ∧ p(B) ⊃ p(node(v, A, B)).

binary_tree_induction: AXIOM

(FORALL (p: [binary_tree -> boolean]):

p(leaf)

AND

(FORALL (node1_var: T), (node2_var: binary_tree),

(node3_var: binary_tree):

p(node2_var) AND p(node3_var)

IMPLIES p(node(node1_var, node2_var, node3_var)))

IMPLIES (FORALL (binary_tree_var: binary_tree):

p(binary_tree_var)))
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Pattern-matching Branching

The CASES construct is used to branch on the outermost
constructor of a datatype expression.

We implicitly assume the disjointness of (node?) and
(leaf?):

CASES leaf OF

leaf : u,
node(a, y, z) : v(a, y, z)
ENDCASES

= u

CASES node(b, w, x) OF

leaf : u,
node(a, y, z) : v(a, y, z)
ENDCASES

= v(b, w, x)
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Useful Generated Combinators

reduce_nat(leaf?_fun:nat, node?_fun:[[T, nat, nat] -> nat]):

[binary_tree -> nat] = ...

every(p: PRED[T])(a: binary_tree): boolean = ...

some(p: PRED[T])(a: binary_tree): boolean = ...

subterm(x, y: binary_tree): boolean = ...

map(f: [T -> T1])(a: binary_tree[T]): binary_tree[T1] = ...
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Ordered Binary Trees

Ordered binary trees can be introduced by a theory that is
parametric in the value type as well as the ordering relation.

The ordering relation is subtyped to be a total order.

total_order?(<=): bool = partial_order?(<=) & dichotomous?(<=)

obt [T : TYPE, <= : (total_order?[T])] : THEORY

BEGIN

IMPORTING binary_tree[T]

A, B, C: VAR binary_tree

x, y, z: VAR T

pp: VAR pred[T]

i, j, k: VAR nat

.

.

.

END obt
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The size Function

The number of nodes in a binary tree can be computed by the
size function which is defined using reduce nat.

size(A) : nat =

reduce_nat(0, (LAMBDA x, i, j: i + j + 1))(A)
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The Ordering Predicate

Recursively checks that the left and right subtrees are ordered, and
that the left (right) subtree values lie below (above) the root value.

ordered?(A) : RECURSIVE bool =

(IF node?(A)

THEN (every((LAMBDA y: y<=val(A)), left(A)) AND

every((LAMBDA y: val(A)<=y), right(A)) AND

ordered?(left(A)) AND

ordered?(right(A)))

ELSE TRUE

ENDIF)

MEASURE size
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Insertion

Compares x against root value and recursively inserts into the
left or right subtree.

insert(x, A): RECURSIVE binary_tree[T] =

(CASES A OF

leaf: node(x, leaf, leaf),

node(y, B, C): (IF x<=y THEN node(y, insert(x, B), C)

ELSE node(y, B, insert(x, C))

ENDIF)

ENDCASES)

MEASURE (LAMBDA x, A: size(A))

The following is a very simple property of insert.

ordered?_insert_step: LEMMA

pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A))
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Proof of insert property

ordered?_insert_step :

|-------

{1} (FORALL (A: binary_tree[T], pp: pred[T], x: T):

pp(x) AND every(pp, A) IMPLIES every(pp, insert(x, A)))

Rule? (induct-and-simplify "A")

every rewrites every(pp!1, leaf)

to TRUE

insert rewrites insert(x!1, leaf)

to node(x!1, leaf, leaf)

every rewrites every(pp!1, node(x!1, leaf, leaf))

to TRUE
.
.
.

By induction on A, and by repeatedly rewriting and simplifying,

Q.E.D.
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Orderedness of insert

ordered?_insert: THEOREM

ordered?(A) IMPLIES ordered?(insert(x, A))

is proved by the 4-step PVS proof

(""

(induct-and-simplify "A" :rewrites "ordered?_insert_step")

(rewrite "ordered?_insert_step")

(typepred "obt.<=")

(grind :if-match all))
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Automated Datatype Simplifications

binary_props[T : TYPE] : THEORY

BEGIN

IMPORTING binary_tree_adt[T]

A, B, C, D: VAR binary_tree[T]

x, y, z: VAR T

leaf_leaf: LEMMA leaf?(leaf)

node_node: LEMMA node?(node(x, B, C))

leaf_leaf1: LEMMA A = leaf IMPLIES leaf?(A)

node_node1: LEMMA A = node(x, B, C) IMPLIES node?(A)

val_node: LEMMA val(node(x, B, C)) = x

leaf_node: LEMMA NOT (leaf?(A) AND node?(A))

node_leaf: LEMMA leaf?(A) OR node?(A)

leaf_ext: LEMMA (FORALL (A, B: (leaf?)): A = B)

node_ext: LEMMA

(FORALL (A : (node?)) : node(val(A), left(A), right(A)) = A)

END binary_props
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Inline Datatypes

combinators : THEORY

BEGIN

combinators: DATATYPE

BEGIN

K: K?

S: S?

app(operator, operand: combinators): app?

END combinators

x, y, z: VAR combinators

reduces_to: PRED[[combinators, combinators]]

K: AXIOM reduces_to(app(app(K, x), y), x)

S: AXIOM reduces_to(app(app(app(S, x), y), z),

app(app(x, z), app(y, z)))

END combinators
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Scalar Datatypes

colors: DATATYPE

BEGIN

red: red?

white: white?

blue: blue?

END colors

The above verbose inline declaration can be abbreviated as:

colors: TYPE = {red, white, blue}
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Disjoint Unions

disj_union[A, B: TYPE] : DATATYPE

BEGIN

inl(left : A): inl?

inr(right : B): inr?

END disj_union

N. Shankar Specification and Proof with PVS 141/173



Mutually Recursive Datatypes

PVS does not directly support mutually recursive datatypes.

These can be defined as subdatatypes (e.g., term, expr) of a
single datatype.

arith: DATATYPE WITH SUBTYPES expr, term

BEGIN

num(n:int): num? :term

sum(t1:term,t2:term): sum? :term

% ...

eq(t1: term, t2: term): eq? :expr

ift(e: expr, t1: term, t2: term): ift? :term

% ...

END arith
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Summary

The PVS datatype mechanism succinctly captures a large
class of useful datatypes by exploiting predicate subtypes and
higher-order types.

Datatype simplifications are built into the primitive inference
mechanisms of PVS.

This makes it possible to define powerful and flexible
high-level strategies.

The PVS datatype is loosely inspired by the Boyer-Moore
Shell principle.

Other systems HOL [Melham89, Gunter93] and Isabelle
[Paulson] have similar datatype mechanisms as a provably
conservative extension of the base logic.
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Transition Systems

Many computational systems can be modeled as transition
systems.

A transition system is a triple 〈Σ, I ,N〉 consisting of a set of
states Σ, an initialization predicate I , and transition relation
N.

Transition system properties include invariance, stability,
eventuality, and refinement.

Finite-state transition systems can be analyzed by means of
state exploration.

Properties of infinite-state transition systems can be proved
using various combinations of theorem proving and model
checking.

N. Shankar Specification and Proof with PVS 144/173



States and Transitions in PVS

Given some state type, an assertion is a predicate on this type,
and action is a relation between states, and a computation is an
infinite sequence of states.

state[state: TYPE] : THEORY

BEGIN

IMPORTING sequences[state]

statepred: TYPE = PRED[state] %assertions

Action: TYPE = PRED[[state, state]]

computation : TYPE = sequence[state]

pp: VAR statepred

action: VAR Action

aa, bb, cc: VAR computation
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States and Transitions

A run is valid if the initialization predicate pp holds initially,
and the action aa holds of each pair of adjacent states.

An invariant assertion holds of each state in the run.

Init(pp)(aa) : bool = pp(aa(0))

Inv(action)(aa) : bool =

(FORALL (n : nat) : action(aa(n), aa(n+1)))

Run(pp, action)(aa): bool =

(Init(pp)(aa) AND Inv(action)(aa))

Inv(pp)(aa) : bool =

(FORALL (n : nat) : pp(aa(n)))

END state
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(Simplified) Peterson’s Mutual Exclusion Algorithm

The algorithm ensures mutual exclusion between two
processes P and Q.

The global state of the algorithm is a record consisting of the
program counters PCP and PCQ, and boolean turn variable.

mutex : THEORY

BEGIN

PC : TYPE = sleeping, trying, critical

state : TYPE = [# pcp : PC,

turn: bool,

pcq : PC #]

IMPORTING state[state]

s, s0, s1: VAR state
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Defining Process P

P is initially sleeping. It moves to trying by setting the turn

variable to FALSE, and enters the critical state if Q is sleeping
or turn is TRUE.

I_P(s) : bool = (sleeping?(pcp(s)))

G_P(s0, s1): bool =

( (s1 = s0) %stutter

OR (sleeping?(pcp(s0)) AND %try

s1 = s0 WITH [pcp := trying, turn := FALSE])

OR (trying?(pcp(s0)) AND %enter critical

(turn(s0) OR sleeping?(pcq(s0))) AND

s1 = s0 WITH [pcp := critical])

OR (critical?(pcp(s0)) AND %exit critical

s1 = s0 WITH [pcp := sleeping, turn := FALSE ]))
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Defining Process Q

Process Q is similar to P with the dual treatment of the turn

variable.

I_Q(s) : bool = (sleeping?(pcq(s)))

G_Q(s0, s1): bool =

( (s1 = s0) %stutter

OR (sleeping?(pcq(s0)) AND %try

s1 = s0 WITH [pcq := trying, turn := TRUE])

OR (trying?(pcq(s0)) AND %enter

(NOT turn(s0) OR sleeping?(pcp(s0))) AND

s1 = s0 WITH [pcq := critical])

OR (critical?(pcq(s0)) AND %exit critical

s1 = s0 WITH [pcq := sleeping, turn := TRUE]))
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The Combined System

The system consists of:

The conjunction of the initializations for P and Q

The disjunction of the actions for P and Q (interleaving).

I(s) : bool = (I_P(s) AND I_Q(s))

G(s0, s1) : bool = (G_P(s0, s1) OR G_Q(s0, s1))

END mutex
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Proving Mutual Exclusion

safe is the assertion that P and Q are not simultaneously
critical.

mutex_proof: THEORY

BEGIN

IMPORTING mutex, connectives[state]

s, s0, s1: VAR state

safe(s) : bool = NOT (critical?(pcp(s)) AND critical?(pcq(s)))

safety_proved: CONJECTURE

(FORALL (aa: computation):

Run(I, G)(aa)

IMPLIES Inv(safe)(aa))

safety proved asserts the invariance of safe.

N. Shankar Specification and Proof with PVS 151/173



Proving Mutual Exclusion

safety_proved :

|-------

{1} (FORALL (aa: computation):

Run(I, G)(aa) IMPLIES Inv(safe)(aa))

Rule? (reduce-invariant)

.

.

.

Apply the invariance rule,,

this yields 11 subgoals:

reduce-invariant is a proof strategy that reduces the task to that
of showing that each transition preserves the invariant.
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Proving Mutual Exclusion

safety_proved.1 :

{-1} Init(I)(aa!1)

|-------

{1} safe(aa!1(0))

Rule? (grind)

.

.

.

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of safety_proved.1.
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Proving Mutual Exclusion

safety_proved.2 :

{-1} (aa!1(1 + (j!1 + 1 - 1)) = aa!1(j!1 + 1 - 1))

{-2} safe(aa!1(j!1))

|-------

{1} safe(aa!1(j!1 + 1))

Rule? (grind)

.

.

.

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of safety_proved.2.
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Proving Mutual Exclusion

safety_proved.3 :

{-1} sleeping?(pcp(aa!1(j!1 + 1 - 1)))

{-2} aa!1(1 + (j!1 + 1 - 1)) =

aa!1(j!1 + 1 - 1) WITH [pcp := trying, turn := FALSE]

{-3} safe(aa!1(j!1))

|-------

{1} safe(aa!1(j!1 + 1))

Rule? (grind)

.

.

.

Trying repeated skolemization, instantiation, and if-lifting,

This completes the proof of safety_proved.3.
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Proving Mutual Exclusion

safety_proved.4 :

{-1} turn(aa!1(j!1 + 1 - 1))

{-2} trying?(pcp(aa!1(j!1 + 1 - 1)))

{-3} aa!1(1 + (j!1 + 1 - 1))

= aa!1(j!1 + 1 - 1) WITH [pcp := critical]

{-4} safe(aa!1(j!1))

|-------

{1} safe(aa!1(j!1 + 1))

Rule? (grind)

safe rewrites safe(aa!1(j!1))

to TRUE

safe rewrites safe(aa!1(1 + j!1))

to NOT critical?(pcq(aa!1(1 + j!1)))

Trying repeated skolemization, instantiation, and if-lifting,

this simplifies to:
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Proving Mutual Exclusion

safety_proved.4 :

{-1} aa!1(j!1)‘turn

{-2} trying?(pcp(aa!1(j!1)))

{-3} aa!1(1 + j!1) = aa!1(j!1) WITH [pcp := critical]

[-4] safe(aa!1(j!1))

{-5} critical?(aa!1(j!1)‘pcq)

|-------

Unprovable subgoal!
Invariant is too weak, and is not inductive.
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Strengthening the Invariant

strong_safe(s) : bool =

((critical?(pcp(s)) IMPLIES (turn(s) OR sleeping?(pcq(s))))

AND

(critical?(pcq(s)) IMPLIES (NOT turn(s) OR sleeping?(pcp(s)))))

strong_safety_proved: THEOREM

(FORALL (aa: computation):

Run(I, G)(aa)

IMPLIES Inv(strong_safe)(aa))

Verified by (then (reduce-invariant) (grind)).
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Strong Invariant Implies Weak

strong_safe_implies_safe :

|-------

{1} FORALL (s: state): (strong_safe IMPLIES safe)(s)

Rule? (grind)

.

.

.

Trying repeated skolemization, instantiation, and if-lifting,

Q.E.D.
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Predicate Transformers

Given a state type state, we already saw that assertions over
this state type have the type pred[state].

Predicate transformers over this type can be given the type
[pred[state] -> pred[state]].

relation_defs [T1, T2: TYPE]: THEORY

BEGIN

R: VAR pred[[T1, T2]]

X: VAR set[T1]

Y: VAR set[T2]

preimage(R)(Y): set[T1] = preimage(R, Y)

postcondition(R)(X): set[T2] = postcondition(R, X)

precondition(R)(Y): set[T1] = precondition(R, Y)

END relation_defs
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The Mu-Calculus

mucalculus[T:TYPE]: THEORY

BEGIN

s: VAR T

p, p1, p2: VAR pred[T]

predicate_transformer: TYPE = [pred[T]->pred[T]]

pt: VAR predicate_transformer

setofpred: VAR pred[pred[T]]

<=(p1,p2): bool = FORALL s: p1(s) IMPLIES p2(s)

monotonic?(pt): bool =

FORALL p1, p2: p1 <= p2 IMPLIES pt(p1) <= pt(p2)

pp: VAR (monotonic?)

glb(setofpred): pred[T] =

LAMBDA s: (FORALL p: member(p,setofpred) IMPLIES p(s))

N. Shankar Specification and Proof with PVS 161/173



The Mu-Calculus

% least fixpoint

lfp(pp): pred[T] = glb({p | pp(p) <= p})

mu(pp): pred[T] = lfp(pp)

lub(setofpred): pred[T] =

LAMBDA s: EXISTS p: member(p,setofpred) AND p(s)

% greatest fixpoint

gfp(pp): pred[T] = lub({p | p <= (pp(p))})

nu(pp): pred[T] = gfp(pp)

END mucalculus

N. Shankar Specification and Proof with PVS 162/173



The Least Fixed Point
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Exercises

1 P is ∪-continuous if 〈Xi |i ∈ N〉 is a family of sets (predicates)
such that Xi ⊆ Xi+1, then P(

⋃
i (Xi )) =

⋃
i (P(Xi )).

2 Show that (µZ .P[Z ])(z1, . . . , zn) =
∨

i P
i [⊥](z1, . . . , zn),

where ⊥ = λz1, . . . , zn : false.

3 Similarly, P is P is ∩-continuous if 〈Xi |i ∈ N〉 is a family of
sets (predicates) such that Xi+1 ⊆ Xi , then
P(

⋂
i (Xi )) =

⋂
i (P(Xi )).

4 Show that (νZ .P[Z ])(z1, . . . , zn) =
∧

i P
i [>](z1, . . . , zn),

where > = λz1, . . . , zn : true.
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Fixed Point Computations

The set of reachable states is fundamental to model checking

Any initial state is reachable.
Any state that can be reached in a single transition from a
reachable state is reachable.
These are all the reachable states.

This is a least fixed point:
mu X: LAMBDA y: I(y) OR EXISTS x: N(x, y) AND

X(x).

An invariant is an assertion that is true of all reachable states:
AGp.
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Temporal Connectives

ctlops[state : TYPE]: THEORY

BEGIN

u,v,w: VAR state

f,g,Q,P,p1,p2: VAR pred[state]

Z: VAR pred[[state, state]]

N: VAR [state, state -> bool]

EX(N,f)(u):bool = (EXISTS v: (f(v) AND N(u, v)))

EU(N,f,g):pred[state] = mu(LAMBDA Q: (g OR (f AND EX(N,Q))))

EF(N,f):pred[state] = EU(N, TRUE, f)

AG(N,f):pred[state] = NOT EF(N, NOT f)

END ctlops
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Symbolic Fixed Point Computations

If the computation state is represented as a boolean array
b[1..N],

Then a set of states can be represented by a boolean function
mapping {0, 1}N to {0, 1}.
Boolean functions can represent

Initial state set
Transition relation
Image of transition relation with respect to a state set

Set of reachable states computable as a boolean function.

ROBDD representation of boolean functions empirically
efficient.
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ROBDD

ROBDDs are a canonical representation of boolean functions
as a decision diagram where

1 Literals are uniformly ordered along every branch
2 Common subterms are identified
3 Redundant branches are removed.

Efficient implementation of boolean operations including
quantification.

Canonical form yields free equivalence checks (for convergence
of fixed points).
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ROBDD for Even Parity

ROBDD for even parity boolean function of a, b, c .

0 1

0 1

1
0 0

1

1
0

1
0

a

b b

c c
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Model Checking Peterson’s Algorithm

mutex_mc: THEORY

BEGIN

IMPORTING mutex_proof

s, s0, s1: VAR state

safety: LEMMA

I(s) IMPLIES

AG(G, safe)(s)
.
.
.

END mutex_mc
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The model-check Command

safety :

|-------

{1} FORALL (s: state): I(s) IMPLIES AG(G, safe)(s)

Rule? (auto-rewrite-theories "mutex" "mutex_proof")

Installing rewrites from theories: mutex mutex_proof,

this simplifies to:

safety :

|-------

[1] FORALL (s: state): I(s) IMPLIES AG(G, safe)(s)

Rule? (model-check)

.

.

.

By rewriting and mu-simplifying,

Q.E.D.
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Fairness

For state s, the property fairEG(N, f)(Ff)(s) holds when
the predicate f holds along every fair path.

For fairness condition Ff, a fair path is one where Ff holds
infinitely often.

This is given by the set of states that can P that can always
reach f AND Ff AND EX(N, P) along an f path.

fairEG(N, f)(Ff): pred[state] =

nu(LAMBDA P: EU(N, f, f AND Ff AND EX(N, P)))
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Linear-Time Temporal Logic (LTL)

s |= a = s(a) = true

s |= ¬A = s 6|= A

s |= A1 ∨ A2 = s |= A1 or s |= A2

s |= AL = ∀σ : σ(0) = s implies σ |= L

s |= EL = ∃σ : σ(0) = s and σ |= L

σ |= a = σ(0)(a) = true

σ |= ¬L = σ 6|= L

σ |= L1 ∨ L2 = σ |= L1 or σ |= L2

σ |= XA = σ〈1〉 |= A

σ |= A1 U A2 = ∃j : σ〈j〉 |= A2 and ∀i < j : σ〈i〉 |= A1

Exercise: Embed LTL semantics in PVS.
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