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Proof rules for probabilistic loops

HOW TO TREAT LOOPS?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 23/61

PROBABILISTIC PROGRAMMING

Every programming language has a probabilistic variant
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Probabilistic Programming Conditioning

The piranha problem [Tijms, 2004]

Joost-Pieter Katoen Probabilistic Programming 13/50

-2

g-



Motivation

Probabilistic programs
Programs with random assignments and conditioning

{ w := 0 } [5/7] { w := 1 };
if (w = 0) { c := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

They encode:
⌐ randomised algorithms
⌐ probabilistic graphical models beyond Bayes’ networks
⌐ controllers for autonomous systems
⌐ security mechanisms
⌐ . . . . . .

"Probabilistic programming aims to make
probabilistic modeling and machine learning accessible to the programmer."1

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]
Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 2/61
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Motivation

Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

x := 1;
while (x > 0) {

x := x+2 [1/2] x := x-1
}

If not, what is its probability to diverge?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 4/61
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Motivation

Positive AST

int x := 1;
bool c := true;
while (c) {

c := false [0.5] c := true;
x := 2*x

}

Finite expected termination time?
aka: is this program positive AST?

while (x > 0) {
x := x-1

}

Finite termination time!
PAST.

Expected runtime of these programs in sequence?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 6/61IT
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Motivation

Our objective

A powerful, simple proof calculus for probabilistic programs.
At the source code level.

No “descend” into the underlying probabilistic model.

Push automation as much as we can.

This is a true challenge: undecidability!
Typically “more undecidable” than deterministic programs

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 7/61A-



Probabilistic Programming The guarded command language

A discipline of programming

WEAKEST PRECONDITIONS

Edsger Wybe Dijkstra
(1930–2002)

Joost-Pieter Katoen and Maurice van Keulen Probabilistic Programming 30/47
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Probabilistic Programming The guarded command language

Predicate transformers
Let the set of states be:

S = {s | s : Vars !Q}

Let the set of predicates be:

P =
(

F | F : S|{z}
states

! {0,1}
)

Predicate F is typically a first-order logic formula. It equals
{s 2 S | s |= F }. Thus P = 2S. Let partial order v equal ✓. Ergo:
(P,v) is a complete lattice where F v G if and only if F ) G

Function � : P! P is called a predicate transformer

Joost-Pieter Katoen Probabilistic Programming 7/30
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Probabilistic Programming Weakest preconditions

Weakest preconditions
For program P, let wp[[P]] : P! P a predicate transformer.

G = wp[[P]](F ) is P’s weakest precondition w.r.t. postcondition F i�
I If P starts in a state s |= G , it terminates in a state t |= F .
I Otherwise, P either terminates in a state t 6|= F or diverges

Joost-Pieter Katoen Probabilistic Programming 10/30
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Probabilistic Programming Weakest preconditions

Weakest preconditions versus Hoare triples

Weakest preconditions are functional

I For each F 2 P there is a unique G 2 P such that

wp[[P]](F ) = G

I Weakest preconditions respect Hoare triples:

{wp[[P]](F )} P {F } is a valid statement

I For terminating1 P:

{G } P {F } is a valid statement, then {G } ) wp[[P]](F )

1For diverging P, the statement {true} P {F } is trivially true, but wp[[P]](F ) = false.
Joost-Pieter Katoen Probabilistic Programming 13/30-8



Probabilistic Programming Weakest preconditions

Weakest preconditions for GCL

Syntax program P Weakest precondition wp[[P]](F )

skip F

x := E F [x := E ]

P;Q wp[[P]] (wp[[Q]](F ))

if (j) P else Q (j ^ wp[[P]](F )) _ (¬j ^ wp[[Q]](F ))

while (j) {P} lfpX . ((j ^ wp[[P]](X )) _ (¬j ^ F ))| {z }
loop characteristic function �F (X)

where lfp is the least fixed point wrt. the ordering v = ) on P.

Joost-Pieter Katoen Probabilistic Programming 16/30
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Probabilistic Programming Weakest preconditions

Possibly unbounded loops

wp[[while (j){P } ,F ]] = lfpX . ((j ^ wp[[P]](X )) _ (¬j ^ F ))| {z }
loop characteristic function �F (X)

I The function �F : P! P is Scott continuous on (P,v).

I Kleene’s fixed point theorem yields: lfp �F = supn2N�n
F (false).

I �n
F (false) denotes the wp of running the loop n times starting from ?, the

empty set of states.

Joost-Pieter Katoen Probabilistic Programming 18/30
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What are probabilistic weakest preconditions? Semantically.

“Dijkstra’s weakest preconditions go random”

WEAKEST PRE-EXPECTATIONS

Dexter Kozen, Annabelle McIver, and Carroll Morgan

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 10/61
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What are probabilistic weakest preconditions? Semantically.

From predicates to quantities

⌐ Let program P be:
x := x+5 [4/5] x := 10

The expected value of x on P’s termination is:

4
5 ⨼ (x + 5) + 1

5 ⨼10 = 4x
5 + 6

⌐ The probability that x = 10 on P’s termination is:

4
5 ⨼ [x+5 = 10]⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌋

Iverson brackets

+
1
5 ⨼ 1 =

4 ⨼ [x = 5] + 1
5

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 11/61
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What are probabilistic weakest preconditions? Semantically.

Expectations

The set of expectations2 (read: random variables):

E = ⌋ f ⌋ f ⨽ S⌊⌊⌋
states

→ R≜0 ⋋ {⋌ } ⌋

Examples: [x = 5] 4x
5 + 6 4⨼[x=5]+1

5 1 x2 +
⌋(y+1) . . .

(E,∈) is a complete lattice where f ∈ g if and only if ⨲s ∋ S. f (s) < g (s)
expectations are the quantitative analogue of predicates

2> expectations in probability theory.
Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 12/61
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What are probabilistic weakest preconditions? Semantically.

Weakest pre-expectations
For program P, let wp[[P]] ⨽ E → E an expectation transformer

g = wp[[P]](f ) is P’s weakest pre-expectation w.r.t. post-expectation f i!

the expected value of f after executing P on input s equals g (s)

Examples:
For P:: x := x+5 [4/5] x := 10, we have:

wp[[P]](x ) = 4x
5 + 6 and wp[[P]]([x = 10]) =

4 ⨼ [x = 5] + 1
5

wp[[P]]([ω]) is the probability of predicate ω on P’s termination

wp[[P]](1) is P’s termination probability

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 13/61
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What are probabilistic weakest preconditions? Semantically.

How to obtain wp for a program?
Syntax probabilistic program P Semantics wp[[P]](f )
skip f

x ⨽= E f [x ⨽= E ]
x ⨽≤ µ εs.⨅

Q
(εv .f (s[x ⨽= v ])) dµs

P; Q wp[[P]] (wp[[Q]](f ))

if (ω) P else Q [ω] ⨼ wp[[P]](f ) + [¬ω] ⨼ wp[[Q]](f )
P [p]Q p ⨼ wp[[P]](f ) + (1⋊p) ⨼ wp[[Q]](f )
while (ω) {P} lfp X . (([ω] ⨼ wp[[P]](X )) + [¬ω] ⨼ f )⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌋

loop characteristic function !f (X )
where lfp is the least fixed point wrt. the ordering ∈ on E.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 15/61
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What are probabilistic weakest preconditions? Semantically.

How to obtain wp for a program?
Syntax probabilistic program P Semantics wp[[P]](f )
skip f

x ⌐= E f [x ⌐= E ]
x ⌐≜ µ ωs.⨅

Q
(ωv .f (s[x ⌐= v ])) dµs

P; Q wp[[P]] (wp[[Q]](f ))
if (ε) P else Q [ε] ⨼ wp[[P]](f ) + [¬ε] ⨼ wp[[Q]](f )
P [p]Q p ⨼ wp[[P]](f ) + (1⨽p) ⨼ wp[[Q]](f )

while (ε) {P} lfp X . (([ε] ⨼ wp[[P]](X )) + [¬ε] ⨼ f )⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌋
loop characteristic function !f (X )

where lfp is the least fixed point wrt. the ordering ∈ on E.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 15/61
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What are probabilistic weakest preconditions? Semantically.

Examples

1. Consider again program P:
x := x+5 [4/5] x := 10

For f = x , we have:
wp[[P]](x ) = 4

5 ⨼wp[[x ⌐= 5]](x ) + 1
5 ⨼wp[[x ⌐= 10]](x )

= 4
5 ⨼(x+5) + 1

5 ⨼10 = 4x
5 + 6

2. For program P (again) and f = [x = 10], we have:

wp[[P]]([x=10]) = 4
5 ⨼ wp[[x ⌐= x+5]]([x=10]) + 1

5 ⨼ wp[[x ⌐= 10]]([x=10])
= 4

5 ⨼ [x+5 = 10] + 1
5 ⨼ [10 = 10]

=
4 ⨼ [x = 5] + 1

5

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 16/61
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What are probabilistic weakest preconditions? Semantically.

Examples

1. Consider again program P:
x := x+5 [4/5] x := 10

For f = x , we have:
wp[[P]](x ) = 4

5 ⨼wp[[x ⌐= 5]](x ) + 1
5 ⨼wp[[x ⌐= 10]](x )

= 4
5 ⨼(x+5) + 1

5 ⨼10 = 4x
5 + 6

2. For program P (again) and f = [x = 10], we have:

wp[[P]]([x=10]) = 4
5 ⨼ wp[[x ⌐= x+5]]([x=10]) + 1
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What are probabilistic weakest preconditions? Semantically.

Loops

wp[[while (ε) {P }]](f ) = lfp X . ([ε] ⨼ wp[[P]](X ) + [¬ε] ⨼ f )⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌋
loop characteristic function !f (X )

⋋ Function !f ⌐ E → E is Scott continuous on (E,∈)
⋋ By Kleene’s fixed point theorem: lfp !f = supn∋N !n

f (0)
⋋ !n

f (0) is f ’s expected value after n times running P, starting in 0

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 17/61
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What are probabilistic weakest preconditions? Semantically.

Loops
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⋋ Function !f ⌐ E → E is Scott continuous on (E,∈)
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f (0)
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f (0) is f ’s expected value after n times running P, starting in 0
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Proof rules for probabilistic loops

HOW TO TREAT LOOPS?
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2-

Toff



Probabilistic Programming Probabilistic Guarded Command Language

The good, the bad, and the ugly

Joost-Pieter Katoen Probabilistic Programming 9/40
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Probabilistic Programming Probabilistic Guarded Command Language

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}

Joost-Pieter Katoen Probabilistic Programming 10/40
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Probabilistic Programming Operational semantics of pGCL

Duelling cowboys

int cowboyDuel(float a, b) { // 0 < a < 1, 0 < b < 1
int t := A [0.5] t := B; // decide who shoots first
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B); // A shoots B with prob. a

} else {
(c := false [b] t := A); // B shoots A with prob. b

}
}

return t; // the survivor
}

Claim:

Cowboy A wins the duel with probability (1→b)· 1

2
a

a+b→a·b .

Joost-Pieter Katoen Probabilistic Programming 24/40
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Probabilistic Programming Operational semantics of pGCL

Computing survival probabilities

Joost-Pieter Katoen Probabilistic Programming 24/34
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Proof rules for probabilistic loops

Upper bounds
Recall:

wp[[while (ω) {P }]](f ) = lfp X . ([ω] ⌐ wp[[P]](X ) + [¬ω] ⌐ f )⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌋
!f (X )

By Park’s lemma: for while(ω){P} and expectations f and I:

!f (I) ≜ I⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌋
“upper” invariant I

implies wp[[while(ω){P}]](f )⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ ⌋
lfp !f

≜ I

Example: while(c = 0) { x++ [p] c := 1 }

I = x + [c = 0] ⌐ p
1⨼p is an “upper”-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 24/61
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Proof rules for probabilistic loops

Upper bounds
Recall:

wp[[while (ω) {P }]](f ) = lfp X . ([ω] ⌐ wp[[P]](X ) + [¬ω] ⌐ f )⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌋
!f (X )

By Park’s lemma: for while(ω){P} and expectations f and I:

!f (I) ≜ I⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌋
“upper” invariant I

implies wp[[while(ω){P}]](f )⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ ⌋
lfp !f

≜ I

Example: while(c = 0) { x++ [p] c := 1 }

I = x + [c = 0] ⌐ p
1⨼p is an “upper”-invariant w.r.t. f = x
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Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

⌊I ≜ !f (I) ⌐ side conditions⌊ implies I ≜ lfp !f

where the side conditions for the loop while(ω){P} are:

1. the loop is PAST, and

2. for any s ⊧ ω, wp[[P]](⌊I(s) ⨼ I⌊)(s) ∈ c⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋
conditional di!erence boundedness

for some c ∋ R<0

Example. Program: while(c = 0){ x++ [p] c ⨽= 1 } satisfies the conditions.

I = x + [c = 0] ⋋ p
1⨼p is a “lower”-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 25/61
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Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

⌊I ≜ !f (I) ⌐ side conditions⌊ implies I ≜ lfp !f

where the side conditions for the loop while(ω){P} are:

1. the loop is PAST, and
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conditional di!erence boundedness

for some c ∋ R<0

Example. Program: while(c = 0){ x++ [p] c ⨽= 1 } satisfies the conditions.

I = x + [c = 0] ⋋ p
1⨼p is a “lower”-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 25/61

SIT

: OST PANETTIERE

If CI ) II → up LT loop Bff ) II

not : I I Ef CI ) * ' I I up Bloop DCI

Dykstra  i up wlp

I I Ef CI ) → II whap flap DAI

ESTE



Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

⌊I ≜ !f (I) ⌐ side conditions⌊ implies I ≜ lfp !f

where the side conditions for the loop while(ω){P} are:

1. the loop is PAST, and
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conditional di!erence boundedness

for some c ∋ R<0

Example. Program: while(c = 0){ x++ [p] c ⨽= 1 } satisfies the conditions.

I = x + [c = 0] ⋋ p
1⨼p is a “lower”-invariant w.r.t. f = x
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Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

⌊I ≜ !f (I) ⌐ side conditions⌊ implies I ≜ lfp !f

where the side conditions for the loop while(ω){P} are:

1. the loop is PAST, and

2. for any s ⊧ ω, wp[[P]](⌊I(s) ⨼ I⌊)(s) ∈ c⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋
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Proof rules for probabilistic loops

HOW TO TREAT LOOPS?
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What are probabilistic weakest preconditions? Semantically.

Bayesian learning by example
{ w := 0 } [5/7] { w := 1 };
if (w = 0) { c := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

Probability mass is normalised by the probability of feasible runs

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 20/61
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What are probabilistic weakest preconditions? Semantically.

Bayesian learning by example
{ w := 0 } [5/7] { w := 1 };
if (w = 0) { c := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

Probability mass is normalised by the probability of feasible runs
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What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]

The probability of feasible program runs:

wp[[P]](1) = 1 ⨼ Pr {P violates an observation }

Weakest pre-expectation of observations:

wp[[observe ω]](f ) = [ω] ⋋ f

Normalisation:
wp[[P]](f )
wp[[P]](1)

Fine point: under possible program divergence:
wp[[P]](f )
wlp[[P]](1)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 21/61
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What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]

The probability of feasible program runs:

wp[[P]](1) = 1 ⨼ Pr {P violates an observation }

Weakest pre-expectation of observations:

wp[[observe ω]](f ) = [ω] ⋋ f

Normalisation:
wp[[P]](f )
wp[[P]](1)

Fine point: under possible program divergence:
wp[[P]](f )
wlp[[P]](1)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 21/61

tpg£ggpgIfif P is AST

i ÷÷÷÷
. .

type



Probabilistic Programming Conditioning

The piranha problem [Tijms, 2004]

Joost-Pieter Katoen Probabilistic Programming 13/50
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Probabilistic Programming Observe statements in w(l)p

The piranha program – a wp perspective
f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

E(f1 = pir | “feasible” run) = 1·1/2 +0·1/4

1� 1/4

=
1/2

3/4

= 2
3 .

Let cwp[[P]](f ) = wp[[P]](f )
wlp[[P]](1) . We will define: cwp[[P]](f ) = (wp[[P]](f ),wlp[[P]](1)) .

Note: wlp[[P]](1) = 1�Pr[P violates an observation]. This includes diverging runs.

Joost-Pieter Katoen Probabilistic Programming 22/50
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Probabilistic Programming Motivation

Judea Pearl: The father of Bayesian networks

Turing Award 2011: “for fundamental contributions to AI

through the development of a calculus for probabilistic and causal reasoning”.

Joost-Pieter Katoen Probabilistic Programming 5/42



Probabilistic Programming What are Bayesian networks?

Example

How likely does a student end up with a bad mood after getting

a bad grade for an easy exam, given that she is well prepared?

Joost-Pieter Katoen Probabilistic Programming 11/42
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Probabilistic Programming What are Bayesian networks?

Example

Pr(D = 0,G = 0,M = 0 | P = 1) =
Pr(D = 0,G = 0,M = 0,P = 1)

Pr(P = 1)

=
0.6 ·0.5 ·0.9 ·0.3

0.3
= 0.27

Joost-Pieter Katoen Probabilistic Programming 12/42



Probabilistic Programming What are Bayesian networks?

The benefits of Bayesian networks

Bayesian networks provide a compact representation of joint distribution functions

if the dependencies between the random variables are sparse.

Another advantage of BNs is

the explicit representation of conditional independencies.

Joost-Pieter Katoen Probabilistic Programming 14/42



Probabilistic Programming Inference

Probabilistic inference

The probabilistic inference problem:

Let BN B with vertex set V , the evidence E → V and the questions Q → V .

Let e be the value of E, and q be the value of Q.

(Exact) probabilistic inference is to determine the conditional probability

Pr(Q = q | E = e) =
Pr(Q = q↑E = e)

Pr(E = e)
.

Joost-Pieter Katoen Probabilistic Programming 34/42



Probabilistic Programming Inference

The complexity class PP

NP → PP (as SAT lies in PP) and coNP → PP (as PP is closed under complement). PP

is contained in PSPACE (as there is a polynomial-space algorithm for MAJSAT).

PP is comparable to the class #P — the counting variant of NP — the class of function

problems “compute f (x)” where f is the number of accepting runs of an NTM running

in polynomial time.

Joost-Pieter Katoen Probabilistic Programming 38/42
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Probabilistic Programming Inference

Complexity of probabilistic inference

Decision variants of probabilistic inference. For probability p ↓Q↔ [0,1):

↭ does Pr(Q = q | E = e) > p? TI

↭ special case: Pr(E = e) > p? STI

Complexity of probabilistic inference [Cooper, 1990]

The decision problems TI and STI are PP-complete.

Proof.
1. Hardness: by a reduction of MAJSAT to STI (since STI is a special case of TI,

MAJSAT is reducible to TI).

2. Membership: To show TI ↓ PP, a polynomial-time algorithm is given that guesses

a solution to TI while ensuring that the guess is correct with probability > 1/2.

Joost-Pieter Katoen Probabilistic Programming 36/42TEGEL
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Probabilistic Programming Inference by program verification

Rejection sampling

For a given Bayesian network and some evidence:

1. Sample from the joint distribution described by the BN

2. If the sample complies with the evidence, accept the sample and halt

3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Potential problem: What happens if the evidence has low probability? E.g., zero.

Joost-Pieter Katoen Probabilistic Programming 18/48
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Probabilistic Programming Inference by program verification

Removal of conditioning = rejection sampling

Recall conditioning removal:

x := 0 [p] x := 1;
y := 0 [p] y := 1;
observe(x != y)

sx, sy := x, y; flag := true;
while(flag) {

x, y := sx, sy; flag := false;
x := 0 [p] x := 1;
y := 0 [p] y := 1;
flag := (x = y)

}

This program transformation replaces observe-statements by loops.

The resulting loopy programs represent rejection sampling.

Joost-Pieter Katoen Probabilistic Programming 19/48
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Probabilistic Programming Inference by program verification

Student exam’s mood example

How likely does a student end up with a bad mood after getting

a bad grade for an easy exam, given that she is well prepared?

Joost-Pieter Katoen Probabilistic Programming 20/48



Probabilistic Programming Inference by program verification

Bayesian networks as programs
⌐ Take a topological sort of the BN’s vertices, e.g., D; P; G ; M

⌐ Map each conditional probability table (aka: node) to a program, e.g.:

if (xD = 0 && xP = 0) {
xG := 0 [0.95] xG := 1
} else if (xD = 1 && xP = 1) {
xG := 0 [0.05] xG := 1
} else if (xD = 0 && xP = 1) {
xG := 0 [0.5] xG := 1
} else if (xD = 1 && xP = 0) {
xG := 0 [0.6] xG := 1

}

⌐ Condition on the evidence, e.g., for P = 1 (“well-prepared”):

repeat { progD ; progP; progG ; progM } until (P=1)

Joost-Pieter Katoen Probabilistic Programming 21/48
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Probabilistic Programming Inference by program verification

Soundness

For BN B with evidence E ≜ V and value v for vertex v :

wp[[prog(B, e)]] ⌊⌊⌊ ⨅
v∈V \E

xv = v
⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌈

wp of the BN program of B

= Pr
⌊⌊⌊ ⨅

v∈V \E
v = v ⌈ ⨅

e∈E

e = e
⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌋⌈

joint distribution of BN B

where prog(B, e) equals repeat progB until ⌈⨆
e∈E

xe = e⌈.
Thus: inference of BNs can be done using wp-reasoning

Joost-Pieter Katoen Probabilistic Programming 23/48
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Probabilistic Programming Inference by program verification

Inference by wp-reasoning

Ergo: exact Bayesian inference can be done by wp-reasoning, e.g.,

wp[[Pmood ]]⌈[xD = 0 ⨼ xG = 0 ⨼ xM = 0]⌈ =
Pr(D = 0, G = 0, M = 0, P = 1)

Pr(P = 1) = 0.27

Joost-Pieter Katoen Probabilistic Programming 24/48



Proof rules for probabilistic loops

HOW TO TREAT LOOPS?
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Probabilistic Programming Motivation

The runtime of a probabilistic program

The runtime of a probabilistic program depends

on the input and

on the internal randomness of the program.

Joost-Pieter Katoen Probabilistic Programming 4/51
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Probabilistic Programming Motivation

Expected runtimes

Expected run-time of program P on input s:

•

Â
i=1

i ·Pr

✓
“P terminates after

i steps on input s”

◆

Joost-Pieter Katoen Probabilistic Programming 6/51
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Probabilistic Programming Motivation

Expected runtimes

Expected run-time of program P on input s:

•

Â
i=1

i ·Pr

✓
“P terminates after

i steps on input s”

◆
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Probabilistic Programming Motivation

Expected runtimes

Expected run-time of program P on input s:

•

Â
i=1

i ·Pr

✓
“P terminates after

i steps on input s”

◆
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Probabilistic Programming Proving positive almost-sure termination

Positive almost-sure termination

For every pGCL program P and input state s:

ert[[P]](0)(s) < •| {z }
positive a.s-termination on s

implies wp[[P]](1)(s) = 1| {z }
a.s.–termination on s

Moreover:

ert[[P]](0) < •| {z }
universal positive a.s–termination

implies wp[[P]](1) = 1| {z }
universal a.s.–termination

Joost-Pieter Katoen Probabilistic Programming 40/51
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Probabilistic Programming Motivation

Coupon collector’s problem

Joost-Pieter Katoen Probabilistic Programming 7/51
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Probabilistic Programming Motivation

Coupon collector’s problem

cp := [0,...,0]; // no coupons yet
i := 1; // coupon to be collected next
x := 0: // number of coupons collected
while (x < N) {

while (cp[i] != 0) {
i := uniform(1..N) // next coupon

}
cp[i] := 1; // coupon i obtained
x++; // one coupon less to go

}

The expected runtime of this program is in �(N· logN).

Joost-Pieter Katoen Probabilistic Programming 8/51
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Probabilistic Programming How long to sample a Bayesian network?

How long to sample a BN?

[Gordon, Nori, Henzinger, Rajamani, 2014]

“the main challenge in this setting [sampling-based approaches] is that many

samples that are generated during execution are ultimately rejected for not

satisfying the observations."

Joost-Pieter Katoen Probabilistic Programming 30/48



Probabilistic Programming How long to sample a Bayesian network?

Sampling time of a toy Bayesian network

This BN is parametric (in a)

How many samples are needed on average

for a single iid-sample for evidence G = 0?

Joost-Pieter Katoen Probabilistic Programming 32/48



Probabilistic Programming How long to sample a Bayesian network?

Sampling time for example BN

Rejection sampling for G = 0 requires
200a

2 ⌐ 40a ⌐ 460

89a
2 ⌐ 69a ⌐ 21

samples:

For a ≜ [0.1, 0.78], < 18 samples; for a ∈ 0.98, 100 samples are needed

For real-life BNs, one may exceed 10
15

(or more) samples

Joost-Pieter Katoen Probabilistic Programming 33/48
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Probabilistic Programming The expected runtime transformer

How Long to Simulate a Bayes Network?

Benchmark BNs from www.bnlearn.com

BN ⌊V ⌊ ⌊E ⌊ aMB ⌊O⌊ EST time (s)

hailfinder 56 66 3.54 5 5 10
5

0.63

hepar2 70 123 4.51 1 1.5 10
2

1.84

win95pts 76 112 5.92 3 4.3 10
5

0.36

pathfinder 135 200 3.04 7 ⨼ 5.44

andes 223 338 5.61 3 5.2 10
3

1.66

pigs 441 592 3.92 1 2.9 10
3

0.74

munin 1041 1397 3.54 5 ⨼ 1.43

aMB = average Markov Blanket, a measure of independence in BNs

Joost-Pieter Katoen Probabilistic Programming 45/48
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Automation

Outlook: a probabilistic Dafny?

Caesar: A verification infrastructure for probabilistic programs

caesarverifier.org
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