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PROBABILISTIC PROGRAMMING

PYRO

Every programming language has a probabilistic variant




The piranha problem [Tijms, 2004]

One fish is contained within the confines of an opaque fishbowl.
The fish is equally likely to be a piranha or a goldfish. A sushi lover
throws a piranha into the fish bowl alongside the other fish. Then,
immediately, before either fish can devour the other, one of the fish is
blindly removed from the fishbowl. The fish that has been removed
from the bowl turns out to be a piranha. What is the probability that
the fish that was originally in the bowl by itself was a piranha?
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Probabilistic programs

Programs with random assignments and conditioning

f1 := gf [0.5] f1 := pir;
f2 := pir;

s := f1 [0.5] s := f2;
observe (s = pir)
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Motivation

Probabilistic programs

and conditioning

f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;

observe (s = pir)
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Motivation

Probabilistic programs

Programs with random assignments an

1= pir;

f1 := gf [0.5] f1
f2 := pir;

s := f1 [0.5] s :=
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?
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Probabilistic programs

Programs with random assignments and conditioning

f1 gf [0.5] f1 := pir;

f2 := pir; PP\ AL
s := f1 [0.5] s := f2; P"“Y\ﬂ

observe (s = pir)

They encode:
P randomised algorithms
P probabilistic graphical models beyond Bayes' networks
P controllers for autonomous systems
P security mechanisms

"Probabilistic programming aims to make

probabilistic modeling and machine learning accessible to the programmer."

‘[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]



Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

X :=1;
while (x > 0) {

X :=}/Z [1/2] x := x-1

}
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Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

Pe i ‘celw\“°\“') 3 :"= 1;
while (x > 0) {

X :=}94’[1/2] x = x-1
¥ W

APANT

If not, what is its probability to diverge?
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Positive AST

int x := 1;

bool c := true;

while (c) {
c := false [0.5] c := true;
X 1= 2%x

}

Finite expected termination time?
aka: is this program positive AST?

Probabilistic Programs.
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Positive AST

int x := 1;

bool c := tr
while (c) { while (x > 0) {
c := false [0.5] c := true; x = x-1
X 1= 2%x T
}
Finite termination time!
Finite expected termination time? PAST.

aka: is this program positive AST?

Probabilistic Programs.
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Motivation

Positive AST

int—e—r=>%;
bool c := true;
while (c) { ° while (x > 0) {
c := false [0.5] c := true; s x = x-1
K=l }
}
Finite termination time!
Finite expected termination time? PAST.

aka: is this program positive AST?

Expected runtime of these programs in sequence?
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Our objective

A powerful, simple proof calculus for probabilistic programs.
At the source code level.

No “descend” into the underlying probabilistic model.

Push automation as much as we can.

This is a true challenge: undecidability!

Typically “more undecidable” than deterministic programs

Joost-Pieter Katoen Probabilistic Programs.



Probabilistic Programmir

WEAKEST PRECONDITIONS

lliSl:ia?“lIE
Ill'llﬂlﬂlllllllllll

For a long time 1 have wanted to write a
book somewhat along the lines of this one: on
the one hand | knew that programs could have
a compelling and deep logical beauty, on the
other hand | was forced to admit that most ..

vogram are presented in 8 way it for mechane Ed Wybe Diik
e e Pl 4 B e sger Wybe Dijkstra
totally unfit for human appreciation. §§
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Predicate transformers

Let the set of states be:

S = {s|s:Vars—>Q}

eq. s =1
5(3\ =3

s(‘t\ =0
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Predicate transformers

Let the set of states be:

S = {s]|s: Vars—>Q}

Let the set of predicates be:

P = {F|F:\S/—>{o,1}}

states —_

B (oo\:qns)
QKQN\P\CL F= XS0 AN 0$3 < 10

s =4, slg)=2 e swe=F

S’(ﬁ\ =4, S'(3\= Ao e~ S’h‘ F
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Predicate transformers

Let the set of states be:

S = {s|s:Vars—Q}

Let the set of predicates be:

P = {F|F:\S/—>{o,1}}

states

Predicate F is typically a first-order logic formula. It equals
{seS|skEF}. ThusP =25

(P,C) is a complete lattice where F C G if and only if F = G
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Predicate transformers

Let the set of states be:

S = {s|s:Vars—Q}

Let the set of predicates be:

P = {F|F:\S/—>{o,1}}

states

Predicate F is typically a first-order logic formula. It equals
{seS|s|=F}. Thus P=25. Let partial order C equal C. Ergo:

(P,C) is a complete lattice where F C G if and only if F = G

Function ® : P — P is called a predicate transformer

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming Weakest preconditions

Weakest preconditions
For program P, let wp[[P]| : P — PP a predicate transformer.

G = wp[[P]|(F) is P's weakest precondition w.r.t. postcondition  F iff
» If P starts in a state s = G, it terminates in a state t = F.

» Otherwise, P either terminates in a state t [~ F or diverges

/\/\/w“’—ﬁo ;
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Weakest preconditions versus Hoare triples

Weakest preconditions are functional

» For each F € P there is a unique G € IP such that

wp[PI(F) = G

> Weakest preconditions respect Hoare triples:

{wp[[P]((F)} P {F} is a valid statement

» For terminating® P:

{G} P {F} s avalid statement, then {G} = wp[[P]J(F)

LFor diverging P, the statement {true} P { F} is trivially true, but wp[[P]|(F) = false.



Weakest preconditions for GCL

Syntax program P Weakest precondition wp[[P]|(F)
skip F
x:=E Flx = E]
P Q wp[[PT (wp[ QTI(F))
if () P else @ (@ A wpl[PI(F)) v (=¢ A wp[QTI(F))
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Probabilistic Programming

Loops

whie () S'P‘S

—
-

¥ (~e)} P ORe(OLPY) e sk
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Probabilistic Programming Weakest preconditions

Possibly unbounded loops

wpl[while (@) {P},F] = IfpX. (¢ A wp[[P](X)) V (=@ A F))

Soes loop characteristic function ®£(X)

exisk!.

» The function ®f : P — P is Scoty continuous on (P, C).
> Kleene's fixed point theorem yields: Ifp ® = sup,cy P (false).

> & (false) denotes the wp of running the loop n times starting from @, the
empty set of states.
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“Dijkstra’s weakest preconditions go random”

WEAKEST PRE-EXPECTATIONS

[ 6

Dexter Kozen, Annabelle Mclver, and Carroll Morgan

Probabilistic Programs.



From predicates to quantities

P Let program P be:

taves el vo\ae

x := x+5 [4/5] x := 10 oF %

The expected value o@on P’s termination is:
4 1
g(X+5)+§10 = ?4‘6

Wilnel yelne g& ,(
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From predicates to quantities 5 +
p q IR RO F
) S e\e
P Let program P be: c®
x := x+5 [4/5] x := 10
The expected value of x on P's termination is:
4 1 4x
g'(X+5)+§‘10— ?4‘6
P The probability that x = 10 on P’s termination is:
4 1 4-[x=5]+1
3 [x+5 = 10] +§-1- 5

lverson brackets
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e e
Expectations

The set of expectations® (read: random variables):

E = {f|f: S, eRzou{w}}

states

%+ expectations in probability theory.

Joost-Pieter Katoen Probabilistic Programs.



-’ ________ __________N
Expectations

The set of expectations® (read: random variables):

E = {f|f: S, eRzou{w}}

states

Examples: [x = 5] 4?X+6 4'[X=5¢ 1 x2+\/(y+1)...

%+ expectations in probability theory.

Joost-Pieter Katoen Probabilistic Programs.



Expectations

The set of expectations® (read: random variables):

]E:{flfi S, > Ryou{oo} £(s) =3%r2

states

Examples: [x = 5] %X +6 4'[X=55]+1 1 2+ \(y+1). ..

(E,E) is a complete lattice where f E g if and only if Vs € S. f(s) < g(s)

expectations are the quantitative analogue of predicates

%+ expectations in probability theory.

Joost-Pieter Katoen

Probabilistic Programs.



R e e
Weakest pre-expectations

For program P, let wp[[P] : E - EE an expectation transformer

g = wp[[P]I(f) is P’'s weakest pre-expectation w.r.t. post-expectation f iff

the expected value of f after executing P on input s equals g(s)

Joost-Pieter Katoen Probabilistic Programs.



" ————
Weakest pre-expectations

For program P, let wp[[P] : E - EE an expectation transformer

g = wp[[P]I(f) is P’'s weakest pre-expectation w.r.t. post-expectation f iff

the expected value of f after executing P on input s equals g(s)

Examples:
For P::|x := x+5 [4/5] x := 10| we have:

4-[x=5]+1

wp[ P](x) = L%X +6 and wp[P]([x =10]) = %

R e —-
expecked Nolue of % ?mb * =0
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Weakest pre-expectations
For program P, let wp[[P] : E - EE an expectation transformer

g = wp[[P]I(f) is P’'s weakest pre-expectation w.r.t. post-expectation f iff

the expected value of f after executing P on input s equals g(s)

Examples:
For P:: x := x+5 [4/5] x := 10, we have:

wpl PTI(x) = 4?X+6 and  wp[P]([x =10]) = %

wp[[ PTI([¢]) is the probability of predicate © on P’s termination

wp[[ PT(1) is P’s termination probability

Probabilistic Programs.
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How to obtain wp for a program?

Syntax probabilistic program P Semantics wp[[ P](f)
skip sdordRon /_\ f
x:=E f[x == E]
X% L Z f(s[x := V])]“s(“)
P; Q X wp[ P (wp[ Q(f))
badesard s |

Joost-Pieter Katoen
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How to obtain wp for a program?

Syntax probabilistic program P Semantics wp[[ P]|(f)
skip £
x:=E fx = E]
X VCqu x 3= V) )
P; Q wpll PT (wp[ QT(f))
f (p) P else Q [e]- wpll PTI(F) + [~]- wpl Q1)
Plp]Q p - wpll PI(f) + (1-p) - wp[ QT(f)

For f € E and c € Ry, (c- f)(s) = c- f(s)

For f,g €E, let (f + g)(s) = f(s) + g(s)

Joost-Pieter Katoen

Probabilistic Programs.



What are probabilistic weakest preconditions? Semantically.

Examples

1. Consider again program P:
|x := x+5 [4/5] x := 10 |

Fowe have: X+ S

ATPTR) = Sl = 60 + Lowpllx = 10T

_ 4 1 _ 4x
= 2+(x+5) + 5-10 = -t 6

P £, 8 — R, _+w

sk $
o exp. NaWe o g’

we TPI (M) = o ©' Ao
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Examples we [ (Y\P:D = pr- et P

W\d3 on
1. Consider again program P: \".\ ‘ermredon
|x := x+5 [4/5] x := 10 |
For f = x, we have: X+s
wolPT(x) = Swpllx 1= 610 + Lwplx = 10](x)

5
_ 4 1 _ 4x
= 2+(x+5) + 5-10 = -t 6

2. For program P (again) and(f =[x = 10], we have:

wpl P[x=10]) = § - wpllx i= x+5]([x=10]) + § - wpllx := 10]([x=10]
= §-[x+5=10]+ % -[10 = 10]
_ 4-[x=5]+1
- 5

Joost-Pieter Katoen Probabilistic Programs.



L —————
Loops

¢t o s

AT

r P

wpl[while (0){ P}]1(F) = Ifp X. ([e]- wpl PT(X) + [=¢]- 1)

« J

loop characteristic function ®¢(X)

F=x
Wik (x>0) iﬂH— P m-—o&

(., ): feg ¢ Vees %);_3(,)
£ Ea_ — §k €D) Ei«(é> e“)*ao""@
Uz, ® - 5 (98
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- Kk ____ __________________ W
Loops

wpl[while (0){ P}](F) = Ifp X. ([e]- wpl PT(X) + [-¢]- 1)

« J

loop characteristic function ®¢(X)

» Function ®; : E - E is Scott continuous on (E, E)

» By Kleene's fixed point theorem:|Ifp ®¢ = sup,ey 7(0)

» ®7(0) is 's expected value after n times running P, starting in 0

Joost-Pieter Katoen Probabilistic Programs.



HOW TO TREAT LOOPS?

Probabilistic Programs.



Probabilistic Programming

The good, the bad, and the ugly

EURD INTERNATIONAL FILMS sacsorm

cmmmm.m

s
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Probabilistic Programming

Duelling cowboys o, be Lo

int cowboyDuel(float a, b) {

int t := A
bool ¢ := true;
while (c) {
if (¢t =4) {
(c := false [a] t := B);
} else {
(c := false [b] t := A);
}
}
return t;
}

Probabilistic Programming

Joost-Pieter Katoen



Probabilistic Programming .

Duelling cowboys

int cowboyDuel(float a, b) { // 0 <a <1, 0 <b < 1

int t := A
bool c := true;
while (c) {
if (£t = A) {
(c := false [a] t := B); // A shoots B with prob. a
} else {
(c := false [b] t := A); // B shoots A with prob. b
}
}
return t; // the survivor

3

Cowboy A wins the duel with probability ?

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming

Computing survival probabilities
Ehe (;&\,e\;‘.\.\b Ak c_o\a\»a_ A S e dael s

- f (> (1)) - @

(* Sggm\o&c seses -k)

a

a+b- ob
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N —— >
Upper bounds bj \eduekNe  invedonks
Recall:

wplwhile (0){ P}]1(F) = Ifp X. ([]- wpl PT(X) + [~] - )

. )

¢f'(X )

By Park’s lemma: for while(p){P} and expectations f and 17~ c®

de(l) E I implies  wp[while(p){P}](f) E /
——— I8 v J
“upper” invariant / Ifp &
/

S\)c\\ :E ‘S on Kméuc\.‘\\)t

Ir\sIO(\' QA‘\‘,
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S ——
Upper bounds
Recall:

wplwhile (0){ P}]1(F) = Ifp X. ([]- wpl PT(X) + [~] - )

. )

¢f'(X )

By Park’s lemma: for while(p){P} and expectations f and I

de(l) E I implies  wp[while(p){P}](f) E /
——— I8 v J
“upper” invariant / Ifp &

erp N S\e b Jede NA
\ /

Example:‘l’ while(c 76 {)P4 [pl ¢ :=171%

w=%¥2 S
2 r
I = x+[c=0]: %'IS an “upper’-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. ~
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K
Lower bounds \’\j \oa9 wwo\\::j

wpl[while () { P}]I(f) = Ifp X. ®£(/)

|Ifp @ = sup,ey d>',?(0)

so: ?:(03,EE(O),E:M,'SE:(O)...E-'_ e g,

V S e®

\eop wwo\\:hés ueﬁ\m‘,.&

C §: (o) = Vp [ u\\i\:('e) iP‘S J ('c)
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K
Lower bounds : OST  Proof Rule

(/ C ®(/) A side conditions) implies | E Ifp &

ex) T > vwplpdMD &

et T T (D) % T T o BTwedY)

’D&\m e 0\ w\p

TS ¢ ) — T w;p TorTI@
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Lower bounds : OST  Prood Rule

(/ C Of(/) A side conditions) implies | E Ifp &

where the side conditions for the loop while(){P} are:

/“ ((\‘To\\\\,) AN
1. the loop is PAST, and
worye

2. forany sk,  wp[P]([/(s)=1])(s) = c for some c € Ry

Joost-Pieter Katoen Probabilistic Programs.



Lower bounds : OST  Prood RUle % T T

PcF

(/ E (/) A side conditions) implies | € Ifp®¢ /

/\3?& .:f‘l‘rﬁ\\% W\e-\'{»t M\\c\\—\

where the side conditiong for the loop while(p){P} are:
_— Fas&\\k Amotd- Soce  Feaminobun
1. the loop is PAST, and

AI ?(‘ IO \-e,nw-‘wxc\e;]
M
2. for any s F ¢, ‘Wp[[P]](ll(S) =1])(s) < c forsomec€e€Ry = A

I . . Y 1,
‘conditional difference boundedness”

Example. Program: while(c = 0){ x++ [p]c := 1} satisfies the conditions.

I = x+[c=0]- % is a “lower"-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs.



BAYESIAN INFERENCE

p(4B) = ZBAPA) (BIL‘E%I)D )

Posterior

Data or Prior
Likelihood

02 04 1 3

Relative Risk (log scale)
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Bayesian learning by example - peoc

{w:i=0)I[6/71 {w:i=1} <
if (w = 0) { ¢ := poisson(6) }
else { c := poisson(2) };

observe (c = 5)

L
Lwal = posteor .

Whet s bBee ?os&‘r:or ARsbreuSoa
of W ( weekend oc “Q\-_) ?
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Bayesian learning by example

{w:=023}0/7T1{w:=113%;
if (w = 0) { ¢ := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

~ 1T ~ 1T

T 075 T 075

2 0.5 2 0.5

~ 0.25 ~ 0.25

&4 L] & 4
0 1 0 1

" \/ "

o Fos\eﬁbr
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Bayesian learning by example

{w:=023}0/7T1{w:=113%;
if (w = 0) { ¢ := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

P

prior poske~or
~~ 1rF ~~ 1rF
T 075 T 075
2 05 2 05
Y 0.25 < 0.25
&4 ) & ™% &
0 1 0 1

Probability mass is normalised by the probability of feasible runs

Joost-Pieter Katoen Probabilistic Programs.



Learning
The probability of feasible program runs:

wp[PT(1) = 1 - Pr{P violates an observation }

Joost-Pieter Katoen Probabilistic Programs.



Learning
The probability of feasible program runs:

wp[PT(1) = 1 - Pr{P violates an observation }

Weakest pre-expectation of observations:

wp[[observe o]|(f) = [¢]-

Joost-Pieter Katoen Probabilistic Programs. ~~



Learning
The probability of feasible program runs:

wp[PT(1)) = 1 - Pr{P violates an observation }
¥

Weakest pre-expectation of observations:

wp[[observe o]|(f) = [¢]-

Normalisation:
wp[[ PT(f)
wp[ PII(1)

Joost-Pieter Katoen
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Learning
The probability of feasible program runs:

wp[PT(1) = 1 - Pr{P violates an observation }

Weakest pre-expectation of observations:

wpl[observe ©]|(f) = [¢]- f
Noa e\\: ;\:Q\% /4.5“: P s (\—ST
/ pee Yem &

Normalisation:

wpll PI(7) wp TP 3 & =
wel PT(D) o ()
Fine point: under possible program divergence: —VV;Z[{[I;;]]((?)

Joost-Pieter Katoen
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The piranha problem [Tijms, 2004]

One fish is contained within the confines of an opaque fishbowl.
The fish is equally likely to be a piranha or a goldfish. A sushi lover
throws a piranha into the fish bowl alongside the other fish. Then,
immediately, before either fish can devour the other, one of the fish is
blindly removed from the fishbowl. The fish that has been removed
from the bowl turns out to be a piranha. What is the probability that
the fish that was originally in the bowl by itself was a piranha?

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming

The piranha program

f1 := gf [0.5] f1 := pir; &— paC
f2 := pir; \
s := f1 [0.5] s := £2; Pr {Q,\_?:P;-}:-i

observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

wpl PI(F) £ o [Hhimei]
wlPID)

Joost-Pieter Katoen
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f1 := gf [0.5] f1 := pir;
f2 := pir; P _C: C’\-_— .
s := f1 [0.5] s := £2; L P 3

observe (s = pir)

L= g 4 we \e DCH
ob serye s = pic)
e ~op Sed (1)
fsstJ T fa "'(‘“‘:‘ TS:P“.B
S:=$1 f"‘-,] S::‘Qz
1 s Thaed] 6 1 Lz,YQ‘:PQS
y el { Gz | + 2=ps \ =l
2 [ 3‘: Pl 2« :: e )‘_,;LKQ\:F:-)

Q"lt:(:\“r“
L TS=ed]) » A Th=ped 3 Thopr) &)



Judea Pearl: The father of Bayesian networks

PROBABILISTIC REASONING
IN INTELLIGENT SYSTEMS:

F ) Networks of Plausible Inference

Judea Pearl

REVISED SECOND PRINTING

Turing Award 2011: “for fundamental contributions to Al
through the development of a calculus for probabilistic and causal reasoning”.

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming What are Bayesian networks?

Example
b=0|D=1 Preparation P=0| P=1
0.6 0.4 0.7 0.3
D=0,P=0
D=1P=1
D=0P=1
D=1,P=0
M=0 | M=1
0.9 0.1
0.3 0.7

How likely does a student end up with a bad mood after getting
a bad grade for an easy exam, given that she is well prepared?
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Probabilistic Programming What are Bayesian networks?

Example
D=0] D=1 Preparation P50 | Pal
0.6 0.4 0.7 0.3
G=
D=0,P=0 0.95
D=1,P=1 0.05
D=0,P=1 0.5
D=1,P=0 0.6
M=0| M=1
0.9 0.1
0.3 0.7

P{D=0{G=0,M=0,P=1)
PP =1)

P(D=0,G=0,M=0|P=1) =

0.6-05-0.9-0.3
0.3

= 0.27

Joost-Pieter Katoen



The benefits of Bayesian networks

Bayesian networks provide a compact representation of joint distribution functions

if the dependencies between the random variables are sparse.

Another advantage of BNs is

the explicit representation of conditional independencies.

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming Inference

Probabilistic inference

The probabilistic inference problem:
Let BN B with vertex set V/, the evidence E C V and the questions Q C V.
Let e be the value of E, and q be the value of Q.

(Exact) probabilistic inference is to determine the conditional probability

P(Q=qAE=¢e)

PrQ=alE=e) = —p 27

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming Inference

The complexity class PP

EXPSIACE

NP C PP (as SAT lies in PP) and coNP C PP (as PP is closed under complement). PP
is contained in PSPACE (as there is a polynomial-space algorithm for MAJSAT).

PP is comparable to the class' #P — the counting variant of NP — the class of function
problems “compute f(x)" where f is the number of accepting runs of an NTM running

in polynomial time.

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming Inference

Complexity of probabilistic inference

Decision variants of probabilistic inference. For probability p € QN[0,1):
> does PHQ=q|E=¢e) > p? Tl
» special case: P(E=e) > p? STI

Complexity of probabilistic inference [Cooper, 1990]

The decision problems Tl and STI are PP-complete.

1. Hardness: by a reduction of MAJSAT to STI (since STI is a special case of TI,
MAUJSAT is reducible to TI).

2. Membership: To show Tl € PP, a polynomial-time algorithm is given that guesses
a solution to TI while ensuring that the guess is correct with probability > 1/2.

Joost-Pieter Katoen
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Probabilistic Programming Inference by program verification

Rejection sampling @

/E.

For a given Bayesian network and some evidence:
1. Sample from the joint distribution described by the BN
2. If the sample complies with the evidence, accept the sample and halt

3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Joost-Pieter Katoen Probabilistic Programming



Removal of conditioning = rejection sampling

sx, sy := x, y; flag := true;
while(flag) {

x :=0 [p] x := 1; X, y := sx, sy; flag := false;
y :=0 [p]l y := 1; A~ x :=0 [p] x := 1;
observe(x != y) y =0 [p]l y :=1;
flag := (x = y)
}

This program transformation replaces observe-statements by loops.

The resulting loopy programs represent rejection sampling.

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming Inference by program verification

Student exam’s mood example

D=0} D=1 Preparation P=0| P=1
0.6 0.4 0.7 0.3
G =
D=0,P=0| 0.95
D=1P=1 0.05
D=0P=1 0.5
D=1,P=0 0.6
M=0 | M=1
0.9 0.1
0.3 0.7

How likely does a student end up with a bad mood after getting
a bad grade for an easy exam, given that she is well prepared?

Joost-Pieter Katoen



Bayesian networks as programs

P Take a topological sort of the BN's vertices, e.g., D; P; G; M

» Map each conditional probability table (aka: node) to a program, e.g.:

if (xD = 0 && xP = 0) {
xG := 0 [0.95] xG := 1

} else if (xD =1 && xP = 1) { G=0]G=1
xG := 0 [0.05] xG := 1 D=0,P=0] 0.95 | 0.05
} else if (XD = O && xP = 1) { D=1P=1 0.05 0.95

xG := 0 [0.5] xG := 1 D-o0P-1
} else if (xD =1 && xP = 0) {
xG := 0 [0.6] xG := 1

D=1,P=0 0.6 0.4

» Condition on the evidence, e.g., for P =1 (“well-prepared”):
. progD ; progP; progG ; progM ; obhsecrve (P=1)

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming Inference by program verification
Soundness

|
For BN B with evidence E € V and value v for vertex v:

wp[[prog(B, e)] /\ x,=v| = Pr /\ v=1| /\e=§

veV\E veV\E eeE
wp of the Bvarogram of B joint distribu;:ion of BN B
where prog(B, e) equals © progBjossene (A xe = e).

Thus:| inference of BNs can be done using wp-reasoning

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming Inference by program verification

Inference by wp-reasoning

lD:o D=1 P=0| P=1
‘ 0.6 0.4 0.7 0.3
G=0|G=1
D=0,P=0| 095 | 0.05
D=1,P=1| 0.05 | 0.95
D=0P=1| 05 0.5
D=1,P=0]| 0.6 0.4
M=0| M=1
G=0]| 0.9 0.1
G=1]| 03 0.7

Ergo: exact Bayesian inference can be done by wp-reasoning, e.g.,

P{D=0,G=0,M=0,P=1)
WPl Prooa J([x0 = 0 A xg = 0 A xpy = 0]) = PAP =1)

Joost-Pieter Katoen



“How long does your program take on average?”

EXPECTED RUNTIMES

b/

EFFICIENCY




The runtime of a probabilistic program

The runtime of a probabilistic program depends
on the input and

on the internal randomness of the program.
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Expected runtimes

Expected run-time of program P on input s:
- < “P terminates after >

Z i-Pr{ . . "
e | i loops on input s

ert P1(t)(s) = expected runtime of P on s where t is runtime after P

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming

Counting loops is incorrect € xpecked
Cu e

P while (true) { skip; x++ } F/ v
P Post: x, as seemingly x counts #loop iterations o Tl (x)B

P Characteristic function: ®,(Y) = Y(x+ x+1)
» Candidate upper bound: / = 0
» Induction: &, (/) = O(x > x+1) =0 =1 ¢/

» By Park induction: ®,(/) © [/ implies wp[[loop]l(x) E /

We — wrongly — get runtime 0.|wp is unsound for expected runtimes.

Joost-Pieter Katoen Probabilistic Programming



Expected run-time transformer

Solukion: s\.:s\\\:b ~dapt debictioe of wp

ect | wite [ feyd(¥) =
e % (1 + D9 e TPI(X) + [l k)

\

h
Y couks” Yhe FE Voon

T\'\a\:‘s all ‘

ert P1(t)(s) = expected runtime of P on s where t is runtime after P

Joost-Pieter Katoen Probabilistic Programming



Positive almost-sure termination

|
For every pGCL program P and input state s:

ert[P(0)(s) < oo implies  wp[[P](1)(s) = 1

=
positive a.s-termination on s a.s.—termination on s
Moreover:
ert[P]|(0) < oo implies wp[[P(1) = 1
—_— ——
universal positive a.s—termination universal a.s.—termination

Joost-Pieter Katoen Probabilistic Programming



Motivation

Probabilistic Programming

Coupon collector’s problem
ON A CLASSICAL PROBLEM OF PROBABILITY THEORY

by
P. ERDOS and A. RENYI
»ﬁ%
20
350
400

upo®
Loed 220
Probabilistic Programming
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Probabilistic Programming Motivation

Coupon collector’s problem

N
~ N
cp := [0,...,0]; // no coupons yet
i :=1; // coupon to be collected nezxt
x := 0: // number of coupons collected

while (x < N) {
while (cpl[il != 0) {
i := uniform(1..N) // next coupon
}
cpli]l :=1; // coupon i obtained
x++; // one coupon less to go

3

The expected runtime of this program is in ©(N-log N).

Probabilistic Programming
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How long to sample a BN?

[Gordon, Nori, Henzinger, Rajamani, 2014]

“the main challenge in this setting [sampling-based approaches] is that many
samples that are generated during execution are ultimately rejected for not

satisfying the observations."

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming

How long to sample a Bayesian network?

Sampling time of a toy Bayesian network

§=0 S=1 R=0 | R=1
R=0 a 1-a a l1-a
R=1 0.2 0.8

G=0| G=1
0.01 0.99
S=0,R=1 0.25 0.75
S=1L,R=0 0.9 0.1
S=1L,R=1 0.2 0.8

This BN is parametric (in a)

How many samples are needed on average

for a single iid-sample for evidence G = 07

Joost-Pieter Katoen




Probabilistic Programming How long to sample a Bayesian network?

Sampling time for example BN

2004 — 40a — 460

Rejection sampling for G = 0 requires samples:
: Pine K 89a% — 69a — 21 P
time time

200«\'\1\6 1Y)

IV~A—N——>

100 100

200

For a € [0.1,0.78], < 18 samples; for a = 0.98, 100 samples are needed

For real-life BNs, one may exceed 10 (or more) samples

Joost-Pieter Katoen Probabilistic Programming



Probabilistic Programming The expected runtime transformer

How Long to Simulate a Bayes Network? .  oceoe

ol o sastete
expes \:\u-e.
Benchmark BNs from www.bnledrn.com .
\lcr\&ca‘a\k
B\we
BN VI | |[E] [aMB [ [O] | EST | time s)\
hailfinder | 56 | 66 | 354 | 5 | 510° 0.63
hepar?2 70 | 123 [ 451 [ 1 [1510°] 184
win95pts 76 | 112 | 502 | 3 [4310° | 036
pathfinder | 135 | 200 | 3.04 7 00 5.44
andes 223 | 338 | 561 || 3 [5210°] 166
pigs 441 | 592 | 392 | 1 [2910° | 074
munin 1041 | 1397 | 3.54 5 00 1.43

aMB = average Markov Blanket, a measure of independence in BNs

Joost-Pieter Katoen Probabilistic Programming



Caesar

A Deductive Verifier for Probabilistic Programs

Quantitative Intermediate Verification Language (HeyVL)

2

VC Generator

H Real-valued Logic (HeyLo) M

SMT Solver

Caesar: A verification infrastructure for probabilistic programs

Joost-Pieter Katoen

caesarverifier.org

Probabilistic Programs.




