
Dijkstra Goes Random
Weakest-Precondition-Reasoning on Probabilistic Programs

Joost-Pieter Katoen

The 20th KeY Symposium, July 2024

Joost-Pieter Katoen Dijkstra Goes Random 1/1

with Caesar
-

I
.

Toot 8-

Proof rules for probabilistic loops

HOW TO TREAT LOOPS?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 23/61

PROBABILISTIC PROGRAMMING

Every programming language has a probabilistic variant

EAT

Web PPL

-223-232-9

Probabilistic Programming Conditioning

The piranha problem [Tijms, 2004]

Joost-Pieter Katoen Probabilistic Programming 13/50

-2

g-

Motivation

Probabilistic programs
Programs with random assignments and conditioning

{ w := 0 } [5/7] { w := 1 };
if (w = 0) { c := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

They encode:
⌐ randomised algorithms
⌐ probabilistic graphical models beyond Bayes’ networks
⌐ controllers for autonomous systems
⌐ security mechanisms
⌐

"Probabilistic programming aims to make
probabilistic modeling and machine learning accessible to the programmer."1

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]
Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 2/61

(
ab

\
Pr { fi =gf } =

^

z
Pr { ftp.ir } = 12

Taggart
age

Motivation

Probabilistic programs
Programs with random assignments and conditioning

{ w := 0 } [5/7] { w := 1 };
if (w = 0) { c := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

They encode:
⌐ randomised algorithms
⌐ probabilistic graphical models beyond Bayes’ networks
⌐ controllers for autonomous systems
⌐ security mechanisms
⌐

"Probabilistic programming aims to make
probabilistic modeling and machine learning accessible to the programmer."1

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]
Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 2/61

-

→
2

-

#pzTGTt
good

Motivation

Probabilistic programs
Programs with random assignments and conditioning

{ w := 0 } [5/7] { w := 1 };
if (w = 0) { c := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

They encode:
⌐ randomised algorithms
⌐ probabilistic graphical models beyond Bayes’ networks
⌐ controllers for autonomous systems
⌐ security mechanisms
⌐

"Probabilistic programming aims to make
probabilistic modeling and machine learning accessible to the programmer."1

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]
Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 2/61

,

#ggpTpTSt
goes

Motivation

Probabilistic programs
Programs with random assignments and conditioning

{ w := 0 } [5/7] { w := 1 };
if (w = 0) { c := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

They encode:
⌐ randomised algorithms
⌐ probabilistic graphical models beyond Bayes’ networks
⌐ controllers for autonomous systems
⌐ security mechanisms
⌐

"Probabilistic programming aims to make
probabilistic modeling and machine learning accessible to the programmer."1

1[Gordon, Henzinger, Nori and Rajamani, FOSE 2014]
Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 2/61

.

. pie unit -4 . . NJ

}

r

Tis

Motivation

Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

x := 1;
while (x > 0) {

x := x+2 [1/2] x := x-1
}

If not, what is its probability to diverge?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 4/61

÷

- y

^ 2
+ z

4 I f

Trot

Motivation

Probabilistic programs are hard to grasp

Does this program almost surely terminate? That is, is it AST?

x := 1;
while (x > 0) {

x := x+2 [1/2] x := x-1
}

If not, what is its probability to diverge?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 4/61

Pr Z terminate) = 2

/

7 PAST
X h

2-

Motivation

Positive AST

int x := 1;
bool c := true;
while (c) {

c := false [0.5] c := true;
x := 2*x

}

Finite expected termination time?
aka: is this program positive AST?

while (x > 0) {
x := x-1

}

Finite termination time!
PAST.

Expected runtime of these programs in sequence?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 6/61IT

Motivation

Positive AST

int x := 1;
bool c := true;
while (c) {

c := false [0.5] c := true;
x := 2*x

}

Finite expected termination time?
aka: is this program positive AST?

while (x > 0) {
x := x-1

}

Finite termination time!
PAST.

Expected runtime of these programs in sequence?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 6/61-5

Motivation

Positive AST

int x := 1;
bool c := true;
while (c) {

c := false [0.5] c := true;
x := 2*x

}

Finite expected termination time?
aka: is this program positive AST?

while (x > 0) {
x := x-1

}

Finite termination time!
PAST.

Expected runtime of these programs in sequence?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 6/61

-
-

a

•

-

9

The

Motivation

Our objective

A powerful, simple proof calculus for probabilistic programs.
At the source code level.

No “descend” into the underlying probabilistic model.

Push automation as much as we can.

This is a true challenge: undecidability!
Typically “more undecidable” than deterministic programs

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 7/61A-

Probabilistic Programming The guarded command language

A discipline of programming

WEAKEST PRECONDITIONS

Edsger Wybe Dijkstra
(1930–2002)

Joost-Pieter Katoen and Maurice van Keulen Probabilistic Programming 30/47

Boohooing
STANGLE -

→

Probabilistic Programming The guarded command language

Predicate transformers
Let the set of states be:

S = {s | s : Vars !Q}

Let the set of predicates be:

P =
(

F | F : S|{z}
states

! {0,1}
)

Predicate F is typically a first-order logic formula. It equals
{s 2 S | s |= F }. Thus P = 2S. Let partial order v equal ✓. Ergo:
(P,v) is a complete lattice where F v G if and only if F) G

Function � : P! P is called a predicate transformer

Joost-Pieter Katoen Probabilistic Programming 7/30

IS

30

e.g . s (x) = I

Sly) =3

s (Z) = O

et

Probabilistic Programming The guarded command language

Predicate transformers
Let the set of states be:

S = {s | s : Vars !Q}

Let the set of predicates be:

P =
(

F | F : S|{z}
states

! {0,1}
)

Predicate F is typically a first-order logic formula. It equals
{s 2 S | s |= F }. Thus P = 2S. Let partial order v equal ✓. Ergo:
(P,v) is a complete lattice where F v G if and only if F) G

Function � : P! P is called a predicate transformer

Joost-Pieter Katoen Probabilistic Programming 7/30

It

20

-

B (ooleans)

examples F= X > o A O Ey C no

scx)=4
, Sly) =3 then SEF

s
'

(x)=4
,

s
'

(g) = no then S
'

F

8

Probabilistic Programming The guarded command language

Predicate transformers
Let the set of states be:

S = {s | s : Vars !Q}

Let the set of predicates be:

P =
(

F | F : S|{z}
states

! {0,1}
)

Predicate F is typically a first-order logic formula. It equals
{s 2 S | s |= F }. Thus P = 2S. Let partial order v equal ✓. Ergo:
(P,v) is a complete lattice where F v G if and only if F) G

Function � : P! P is called a predicate transformer

Joost-Pieter Katoen Probabilistic Programming 7/30

If

30

To @

so

Probabilistic Programming The guarded command language

Predicate transformers
Let the set of states be:

S = {s | s : Vars !Q}

Let the set of predicates be:

P =
(

F | F : S|{z}
states

! {0,1}
)

Predicate F is typically a first-order logic formula. It equals
{s 2 S | s |= F }. Thus P = 2S. Let partial order v equal ✓. Ergo:
(P,v) is a complete lattice where F v G if and only if F) G

Function � : P! P is called a predicate transformer

Joost-Pieter Katoen Probabilistic Programming 7/30

-

ZO

TE

Probabilistic Programming Weakest preconditions

Weakest preconditions
For program P, let wp[[P]] : P! P a predicate transformer.

G = wp[[P]](F) is P’s weakest precondition w.r.t. postcondition F i�
I If P starts in a state s |= G , it terminates in a state t |= F .
I Otherwise, P either terminates in a state t 6|= F or diverges

Joost-Pieter Katoen Probabilistic Programming 10/30

f- G

.TT?------.i=F...---n-x
,

I
ti

" t
.

HG . e- a

input state ,

-00
F

output states

so

Probabilistic Programming Weakest preconditions

Weakest preconditions versus Hoare triples

Weakest preconditions are functional

I For each F 2 P there is a unique G 2 P such that

wp[[P]](F) = G

I Weakest preconditions respect Hoare triples:

{wp[[P]](F)} P {F } is a valid statement

I For terminating1 P:

{G } P {F } is a valid statement, then {G }) wp[[P]](F)

1For diverging P, the statement {true} P {F } is trivially true, but wp[[P]](F) = false.
Joost-Pieter Katoen Probabilistic Programming 13/30-8

Probabilistic Programming Weakest preconditions

Weakest preconditions for GCL

Syntax program P Weakest precondition wp[[P]](F)

skip F

x := E F [x := E]

P;Q wp[[P]] (wp[[Q]](F))

if (j) P else Q (j ^ wp[[P]](F)) _ (¬j ^ wp[[Q]](F))

while (j) {P} lfpX . ((j ^ wp[[P]](X)) _ (¬j ^ F))| {z }
loop characteristic function �F (X)

where lfp is the least fixed point wrt. the ordering v =) on P.

Joost-Pieter Katoen Probabilistic Programming 16/30

It

8

Example P= att ; b - -

-

F = a - b so

what is up
FPDCF) ?

Example
-

up EPD (y
'

> o) where program P is :

-

F-

if ly > o) { x .

. es) else { xi-zgy.tt) ;

y : = X - 3

read this from bottom to top :Hey> on true) V (nagao) n false) = y > o

if Cy > o) {

1/(5-3)'
> 2 = true /

Xi -- 5
up GPD CF)

H (x -3)

27.2
} else {

D (2 - 3)

272

= false

X : = 2 ;

D (x - 3) 2
> 2

ytt

H (x - s)
2

> 2

} ;

HK
- 3) 2

> 2

y : EX - 3

Hy
2

> 2 ← post condition

Probabilistic Programming Weakest preconditions

Possibly unbounded loops

wp[[while (j){P } ,F]] = lfpX . ((j ^ wp[[P]](X)) _ (¬j ^ F))| {z }
loop characteristic function �F (X)

I The function �F : P! P is Scott continuous on (P,v).

I Kleene’s fixed point theorem yields: lfp �F = supn2N�n
F (false).

I �n
F (false) denotes the wp of running the loop n times starting from ?, the

empty set of states.

Joost-Pieter Katoen Probabilistic Programming 18/30

LoopLoopsThedford

while (e) { p }

=

if (e) { p ; while he) LPD else skip

Is

Probabilistic Programming Weakest preconditions

Possibly unbounded loops

wp[[while (j){P } ,F]] = lfpX . ((j ^ wp[[P]](X)) _ (¬j ^ F))| {z }
loop characteristic function �F (X)

I The function �F : P! P is Scott continuous on (P,v).

I Kleene’s fixed point theorem yields: lfp �F = supn2N�n
F (false).

I �n
F (false) denotes the wp of running the loop n times starting from ?, the

empty set of states.

Joost-Pieter Katoen Probabilistic Programming 18/30

do

:.

\

IT

What are probabilistic weakest preconditions? Semantically.

“Dijkstra’s weakest preconditions go random”

WEAKEST PRE-EXPECTATIONS

Dexter Kozen, Annabelle McIver, and Carroll Morgan

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 10/61

STAT

TATA
got

What are probabilistic weakest preconditions? Semantically.

From predicates to quantities

⌐ Let program P be:
x := x+5 [4/5] x := 10

The expected value of x on P’s termination is:

4
5 ⨼ (x + 5) + 1

5 ⨼10 = 4x
5 + 6

⌐ The probability that x = 10 on P’s termination is:

4
5 ⨼ [x+5 = 10]⌊⌊⌊⌋

Iverson brackets

+
1
5 ⨼ 1 =

4 ⨼ [x = 5] + 1
5

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 11/61

ITIL

[
in due

T

initial value of x

Stf

What are probabilistic weakest preconditions? Semantically.

From predicates to quantities

⌐ Let program P be:
x := x+5 [4/5] x := 10

The expected value of x on P’s termination is:

4
5 ⨼ (x + 5) + 1

5 ⨼10 = 4x
5 + 6

⌐ The probability that x = 10 on P’s termination is:

4
5 ⨼ [x+5 = 10]⌊⌊⌊⌋

Iverson brackets

+
1
5 ⨼ 1 =

4 ⨼ [x = 5] + 1
5

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 11/61

Tff

⇒
.

. "

-222yd

What are probabilistic weakest preconditions? Semantically.

Expectations

The set of expectations2 (read: random variables):

E = ⌋ f ⌋ f ⨽ S⌊⌊⌋
states

→ R≜0 ⋋ {⋌ } ⌋

Examples: [x = 5] 4x
5 + 6 4⨼[x=5]+1

5 1 x2 +
⌋(y+1) . . .

(E,∈) is a complete lattice where f ∈ g if and only if ⨲s ∋ S. f (s) < g (s)
expectations are the quantitative analogue of predicates

2> expectations in probability theory.
Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 12/61

Ttr

Sfpd

What are probabilistic weakest preconditions? Semantically.

Expectations

The set of expectations2 (read: random variables):

E = ⌋ f ⌋ f ⨽ S⌊⌊⌋
states

→ R≜0 ⋋ {⋌ } ⌋

Examples: [x = 5] 4x
5 + 6 4⨼[x=5]+1

5 1 x2 +
⌋(y+1) . . .

(E,∈) is a complete lattice where f ∈ g if and only if ⨲s ∋ S. f (s) < g (s)
expectations are the quantitative analogue of predicates

2> expectations in probability theory.
Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 12/61

LIFT

Steps

What are probabilistic weakest preconditions? Semantically.

Expectations

The set of expectations2 (read: random variables):

E = ⌋ f ⌋ f ⨽ S⌊⌊⌋
states

→ R≜0 ⋋ {⋌ } ⌋

Examples: [x = 5] 4x
5 + 6 4⨼[x=5]+1

5 1 x2 +
⌋(y+1) . . .

(E,∈) is a complete lattice where f ∈ g if and only if ⨲s ∋ S. f (s) < g (s)
expectations are the quantitative analogue of predicates

2> expectations in probability theory.
Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 12/61

Site

:c
f- e y2tX

f C s) = z 't 2

= y y

Left

What are probabilistic weakest preconditions? Semantically.

Weakest pre-expectations
For program P, let wp[[P]] ⨽ E → E an expectation transformer

g = wp[[P]](f) is P’s weakest pre-expectation w.r.t. post-expectation f i!

the expected value of f after executing P on input s equals g (s)

Examples:
For P:: x := x+5 [4/5] x := 10, we have:

wp[[P]](x) = 4x
5 + 6 and wp[[P]]([x = 10]) =

4 ⨼ [x = 5] + 1
5

wp[[P]]([ω]) is the probability of predicate ω on P’s termination

wp[[P]](1) is P’s termination probability

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 13/61

tf

Target

What are probabilistic weakest preconditions? Semantically.

Weakest pre-expectations
For program P, let wp[[P]] ⨽ E → E an expectation transformer

g = wp[[P]](f) is P’s weakest pre-expectation w.r.t. post-expectation f i!

the expected value of f after executing P on input s equals g (s)
Examples:

For P:: x := x+5 [4/5] x := 10, we have:

wp[[P]](x) = 4x
5 + 6 and wp[[P]]([x = 10]) =

4 ⨼ [x = 5] + 1
5

wp[[P]]([ω]) is the probability of predicate ω on P’s termination

wp[[P]](1) is P’s termination probability

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 13/61

ETAT

IEEE ¥+7

BRETT

What are probabilistic weakest preconditions? Semantically.

Weakest pre-expectations
For program P, let wp[[P]] ⨽ E → E an expectation transformer

g = wp[[P]](f) is P’s weakest pre-expectation w.r.t. post-expectation f i!

the expected value of f after executing P on input s equals g (s)
Examples:

For P:: x := x+5 [4/5] x := 10, we have:

wp[[P]](x) = 4x
5 + 6 and wp[[P]]([x = 10]) =

4 ⨼ [x = 5] + 1
5

wp[[P]]([ω]) is the probability of predicate ω on P’s termination

wp[[P]](1) is P’s termination probability

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 13/61

Toff

SETTLE

What are probabilistic weakest preconditions? Semantically.

How to obtain wp for a program?
Syntax probabilistic program P Semantics wp[[P]](f)
skip f

x ⨽= E f [x ⨽= E]
x ⨽≤ µ εs.⨅

Q
(εv .f (s[x ⨽= v])) dµs

P; Q wp[[P]] (wp[[Q]](f))

if (ω) P else Q [ω] ⨼ wp[[P]](f) + [¬ω] ⨼ wp[[Q]](f)
P [p]Q p ⨼ wp[[P]](f) + (1⋊p) ⨼ wp[[Q]](f)
while (ω) {P} lfp X . (([ω] ⨼ wp[[P]](X)) + [¬ω] ⨼ f)⌊⌊⌋

loop characteristic function !f (X)
where lfp is the least fixed point wrt. the ordering ∈ on E.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 15/61

to

substitution \

IfugaoFocus

Ei
.

Staff

Exempt program P : X : = unit Eytx ,
2- y]

post - expectation f

: Ex > b)

initial state S : s (x) so
, Sly) - 4

what is up FPD (f) (s) ?

up LTPD (f) l s) = 2- fish) .
f- (s [x : =D)

V E Oz

µs = unit [4+0,24] = unit E 4,8]

¥24.gg
I -

f Is Exit)

What are probabilistic weakest preconditions? Semantically.

How to obtain wp for a program?
Syntax probabilistic program P Semantics wp[[P]](f)
skip f

x ⌐= E f [x ⌐= E]
x ⌐≜ µ ωs.⨅

Q
(ωv .f (s[x ⌐= v])) dµs

P; Q wp[[P]] (wp[[Q]](f))
if (ε) P else Q [ε] ⨼ wp[[P]](f) + [¬ε] ⨼ wp[[Q]](f)
P [p]Q p ⨼ wp[[P]](f) + (1⨽p) ⨼ wp[[Q]](f)

while (ε) {P} lfp X . (([ε] ⨼ wp[[P]](X)) + [¬ε] ⨼ f)⌊⌊⌋
loop characteristic function !f (X)

where lfp is the least fixed point wrt. the ordering ∈ on E.

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 15/61

ftp.A.am

.

gpt

What are probabilistic weakest preconditions? Semantically.

Examples

1. Consider again program P:
x := x+5 [4/5] x := 10

For f = x , we have:
wp[[P]](x) = 4

5 ⨼wp[[x ⌐= 5]](x) + 1
5 ⨼wp[[x ⌐= 10]](x)

= 4
5 ⨼(x+5) + 1

5 ⨼10 = 4x
5 + 6

2. For program P (again) and f = [x = 10], we have:

wp[[P]]([x=10]) = 4
5 ⨼ wp[[x ⌐= x+5]]([x=10]) + 1

5 ⨼ wp[[x ⌐= 10]]([x=10])
= 4

5 ⨼ [x+5 = 10] + 1
5 ⨼ [10 = 10]

=
4 ⨼ [x = 5] + 1

5

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 16/61

✓
Xt s

-

P f
.

. $ → IR
> o

to

post f

Wp IPD I f) =
exp . value of f

on P 's termination

Std

What are probabilistic weakest preconditions? Semantically.

Examples

1. Consider again program P:
x := x+5 [4/5] x := 10

For f = x , we have:
wp[[P]](x) = 4

5 ⨼wp[[x ⌐= 5]](x) + 1
5 ⨼wp[[x ⌐= 10]](x)

= 4
5 ⨼(x+5) + 1

5 ⨼10 = 4x
5 + 6

2. For program P (again) and f = [x = 10], we have:

wp[[P]]([x=10]) = 4
5 ⨼ wp[[x ⌐= x+5]]([x=10]) + 1

5 ⨼ wp[[x ⌐= 10]]([x=10])
= 4

5 ⨼ [x+5 = 10] + 1
5 ⨼ [10 = 10]

=
4 ⨼ [x = 5] + 1

5

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 16/61

It

up LTPD (Tt]) = pr .
that Y

holds on

pls lamination

(
Xt

set-off

What are probabilistic weakest preconditions? Semantically.

Loops

wp[[while (ε) {P }]](f) = lfp X . ([ε] ⨼ wp[[P]](X) + [¬ε] ⨼ f)⌊⌊⌋
loop characteristic function !f (X)

⋋ Function !f ⌐ E → E is Scott continuous on (E,∈)
⋋ By Kleene’s fixed point theorem: lfp !f = supn∋N !n

f (0)
⋋ !n

f (0) is f ’s expected value after n times running P, starting in 0

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 17/61

affect

✓
EE

,
moon

f- ex

while C x > o) { xtt Et] x . = o }

(E
,E) i

f Eg iff the $ f- G)

gasgo)

f- Eg → Eh (f) I oIhCg) EIR
> oto

WITH Cfi) = Eh (Uf;)
-8ft

What are probabilistic weakest preconditions? Semantically.

Loops

wp[[while (ε) {P }]](f) = lfp X . ([ε] ⨼ wp[[P]](X) + [¬ε] ⨼ f)⌊⌊⌋
loop characteristic function !f (X)

⋋ Function !f ⌐ E → E is Scott continuous on (E,∈)
⋋ By Kleene’s fixed point theorem: lfp !f = supn∋N !n

f (0)
⋋ !n

f (0) is f ’s expected value after n times running P, starting in 0

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 17/61

tf

stopoff

Proof rules for probabilistic loops

HOW TO TREAT LOOPS?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 23/61

2-

Toff

Probabilistic Programming Probabilistic Guarded Command Language

The good, the bad, and the ugly

Joost-Pieter Katoen Probabilistic Programming 9/40

Xd

A B

of

Probabilistic Programming Probabilistic Guarded Command Language

Duelling cowboys

int cowboyDuel(float a, b) {
int t := A [0.5] t := B;
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B);

} else {
(c := false [b] t := A);

}
}
return t;

}

Joost-Pieter Katoen Probabilistic Programming 10/40

a.beeo.it
agg

ST

Probabilistic Programming Operational semantics of pGCL

Duelling cowboys

int cowboyDuel(float a, b) { // 0 < a < 1, 0 < b < 1
int t := A [0.5] t := B; // decide who shoots first
bool c := true;
while (c) {

if (t = A) {
(c := false [a] t := B); // A shoots B with prob. a

} else {
(c := false [b] t := A); // B shoots A with prob. b

}
}

return t; // the survivor
}

Claim:

Cowboy A wins the duel with probability (1→b)· 1

2
a

a+b→a·b .

Joost-Pieter Katoen Probabilistic Programming 24/40

IT

Ectomorphs
?

ST

Probabilistic Programming Operational semantics of pGCL

Computing survival probabilities

Joost-Pieter Katoen Probabilistic Programming 24/34

<48 "'(D*D535<= <4*< > $(LD(=

n
> L5:6 <48 A@83 d

&' T &*:83 B a F <(T A
B
P

B
(F

. 60* F
P

C . . >, *F T . , D F F
b

-
* .6* P > 6<*'<6

5: , > ,

D

Ä . U T *,*F M * , D F F
b

* Y , D F 48 Q 6<*'<6

<(, ,
,

C
M<*)8(+8<'5$ 68'586 < F

. r
- -

< W6 b
*<D ,

*D

TTT

O

ftp..EE#ksxxhzgztET-aME.me?.E...e......-BEEgzgghsoatBasg
aBsaEIasg-use

munia
g-

Proof rules for probabilistic loops

Upper bounds
Recall:

wp[[while (ω) {P }]](f) = lfp X . ([ω] ⌐ wp[[P]](X) + [¬ω] ⌐ f)⌊⌊⌋
!f (X)

By Park’s lemma: for while(ω){P} and expectations f and I:

!f (I) ≜ I⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌋
“upper” invariant I

implies wp[[while(ω){P}]](f)⌊⌊ ⌋
lfp !f

≜ I

Example: while(c = 0) { x++ [p] c := 1 }

I = x + [c = 0] ⌐ p
1⨼p is an “upper”-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 24/61

Ted

by inductive invariants

✓ E IE

↳such I is

, ni: we

Topsy

Proof rules for probabilistic loops

Upper bounds
Recall:

wp[[while (ω) {P }]](f) = lfp X . ([ω] ⌐ wp[[P]](X) + [¬ω] ⌐ f)⌊⌊⌋
!f (X)

By Park’s lemma: for while(ω){P} and expectations f and I:

!f (I) ≜ I⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊ ⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌊⌋
“upper” invariant I

implies wp[[while(ω){P}]](f)⌊⌊ ⌋
lfp !f

≜ I

Example: while(c = 0) { x++ [p] c := 1 }

I = x + [c = 0] ⌐ p
1⨼p is an “upper”-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 24/61

IT

y I
e op - value of

geo - distr

,

¥xtz If

Softwood

P : : while (c=o) { Xtt Ep] c :=n }

claim I
= it

o

!!!
-

super invariant wrt
.

f=X

¥fCI) I
t I

If CI) = E Cfo) - x t fed up (xtt Ep) Cien
,

I)

= Cato) - xtfc-g.p.CC/tDtfc--DIp) t Cn - p).at= ¥⇒IFI
=

x

#
ee

oj¢ptn÷
)

-

=PrpEf CI) = x + Ceo]
I

⇒
only equalities

r -

p used
,

so

-
i

OIFCI)=I
= I

i. e .
I is a fixed

point of If

Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

⌊I ≜ !f (I) ⌐ side conditions⌊ implies I ≜ lfp !f

where the side conditions for the loop while(ω){P} are:

1. the loop is PAST, and

2. for any s ⊧ ω, wp[[P]](⌊I(s) ⨼ I⌊)(s) ∈ c⌋⌋⌋
conditional di!erence boundedness

for some c ∋ R<0

Example. Program: while(c = 0){ x++ [p] c ⨽= 1 } satisfies the conditions.

I = x + [c = 0] ⋋ p
1⨼p is a “lower”-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 25/61

IT

by loop unrolling

s

so : I :(o)
, IHO).EE/o),oIfCD...ElfpoIf

- -

loop unrolling WPF loop D

€ IfkCo) = up whilee) EP)Dlf)

Stat

Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

⌊I ≜ !f (I) ⌐ side conditions⌊ implies I ≜ lfp !f

where the side conditions for the loop while(ω){P} are:

1. the loop is PAST, and

2. for any s ⊧ ω, wp[[P]](⌊I(s) ⨼ I⌊)(s) ∈ c⌋⌋⌋
conditional di!erence boundedness

for some c ∋ R<0

Example. Program: while(c = 0){ x++ [p] c ⨽= 1 } satisfies the conditions.

I = x + [c = 0] ⋋ p
1⨼p is a “lower”-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 25/61

SIT

: OST PANETTIERE

If CI) II → up LT loop Bff) II

not : I I Ef CI) * ' I I up Bloop DCI

Dykstra i up wlp

I I Ef CI) → II whap flap DAI

ESTE

Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

⌊I ≜ !f (I) ⌐ side conditions⌊ implies I ≜ lfp !f

where the side conditions for the loop while(ω){P} are:

1. the loop is PAST, and

2. for any s ⊧ ω, wp[[P]](⌊I(s) ⨼ I⌊)(s) ∈ c⌋⌋⌋
conditional di!erence boundedness

for some c ∋ R<0

Example. Program: while(c = 0){ x++ [p] c ⨽= 1 } satisfies the conditions.

I = x + [c = 0] ⋋ p
1⨼p is a “lower”-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 25/61

-

I highly undecidable

worse then city
!

Johnstone's

Effed

Proof rules for probabilistic loops

Lower bounds [Hark, K. et al, POPL 2020]

⌊I ≜ !f (I) ⌐ side conditions⌊ implies I ≜ lfp !f

where the side conditions for the loop while(ω){P} are:

1. the loop is PAST, and

2. for any s ⊧ ω, wp[[P]](⌊I(s) ⨼ I⌊)(s) ∈ c⌋⌋⌋
conditional di!erence boundedness

for some c ∋ R<0

Example. Program: while(c = 0){ x++ [p] c ⨽= 1 } satisfies the conditions.

I = x + [c = 0] ⋋ p
1⨼p is a “lower”-invariant w.r.t. f = x

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 25/61

BITI
I I

PCF

I
1878 Iranian

mathematician

- positive almost sure termination
-

ME PRE terminate]

= I

{ r rr

Sfpd

Proof rules for probabilistic loops

HOW TO TREAT LOOPS?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 23/61

SYNTAX FOR EXPECTATIONSBAYESIAN INFERENCE
eBEgEbEEzopst

Emmenagogue
I

mB*q

*
god

What are probabilistic weakest preconditions? Semantically.

Bayesian learning by example
{ w := 0 } [5/7] { w := 1 };
if (w = 0) { c := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

Probability mass is normalised by the probability of feasible runs

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 20/61

Satta

← prior

(
Ewer] ← posterior distr

.

What is the posterior distribution

of w (weekend or not) ?

SETI

What are probabilistic weakest preconditions? Semantically.

Bayesian learning by example
{ w := 0 } [5/7] { w := 1 };
if (w = 0) { c := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

Probability mass is normalised by the probability of feasible runs

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 20/61

TRIAL

C. a
go.EE#ttEseIggg

What are probabilistic weakest preconditions? Semantically.

Bayesian learning by example
{ w := 0 } [5/7] { w := 1 };
if (w = 0) { c := poisson(6) }
else { c := poisson(2) };
observe (c = 5)

Probability mass is normalised by the probability of feasible runs

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 20/61

TILTING

(
prior

posterior

gpgtgefgg-TT-g.gg

GLATT

What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]

The probability of feasible program runs:

wp[[P]](1) = 1 ⨼ Pr {P violates an observation }

Weakest pre-expectation of observations:

wp[[observe ω]](f) = [ω] ⋋ f

Normalisation:
wp[[P]](f)
wp[[P]](1)

Fine point: under possible program divergence:
wp[[P]](f)
wlp[[P]](1)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 21/61

-22222

STILL

What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]

The probability of feasible program runs:

wp[[P]](1) = 1 ⨼ Pr {P violates an observation }

Weakest pre-expectation of observations:

wp[[observe ω]](f) = [ω] ⋋ f

Normalisation:
wp[[P]](f)
wp[[P]](1)

Fine point: under possible program divergence:
wp[[P]](f)
wlp[[P]](1)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 21/61

-BBoSGeoooFggrGTT

g-

What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]

The probability of feasible program runs:

wp[[P]](1) = 1 ⨼ Pr {P violates an observation }

Weakest pre-expectation of observations:

wp[[observe ω]](f) = [ω] ⋋ f

Normalisation:
wp[[P]](f)
wp[[P]](1)

Fine point: under possible program divergence:
wp[[P]](f)
wlp[[P]](1)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 21/61

soothsayer

>
Soft

What are probabilistic weakest preconditions? Semantically.

Learning [Nori et al, AAAI 2014; Olmedo, K., et al, TOPLAS 2018]

The probability of feasible program runs:

wp[[P]](1) = 1 ⨼ Pr {P violates an observation }

Weakest pre-expectation of observations:

wp[[observe ω]](f) = [ω] ⋋ f

Normalisation:
wp[[P]](f)
wp[[P]](1)

Fine point: under possible program divergence:
wp[[P]](f)
wlp[[P]](1)

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 21/61

tpg£ggpgIfif P is AST

i ÷÷÷÷
. .

type

Probabilistic Programming Conditioning

The piranha problem [Tijms, 2004]

Joost-Pieter Katoen Probabilistic Programming 13/50

-#-

Probabilistic Programming Observe statements in w(l)p

The piranha program – a wp perspective
f1 := gf [0.5] f1 := pir;
f2 := pir;
s := f1 [0.5] s := f2;
observe (s = pir)

What is the probability that the original fish in the bowl was a piranha?

E(f1 = pir | “feasible” run) = 1·1/2 +0·1/4

1� 1/4

=
1/2

3/4

= 2
3 .

Let cwp[[P]](f) = wp[[P]](f)
wlp[[P]](1) . We will define: cwp[[P]](f) = (wp[[P]](f),wlp[[P]](1)) .

Note: wlp[[P]](1) = 1�Pr[P violates an observation]. This includes diverging runs.

Joost-Pieter Katoen Probabilistic Programming 22/50

mammonism
←

:÷⇒⇒÷

zq€€zoBEgggq
wmmm9BgplgztogpTEE

mmoMMMBEEd
•

} p for E free pie]

[fr = pm] I up FPD Cf)

observe (s = Pir)
up FPD (a)

[s
-

- par] - Cfr =p ,r] Es=pF)

s :=fn EH] si=f2
Iz I ftp.T)

Iz 7¥r]Eh=pir]t{LEET
Ef ' =P 'D

+ zgfvp.rs
=7

fziepir

I If , =p :] + { EATER] { ftp.rjtt

⑦
e' if

u

Probabilistic Programming Motivation

Judea Pearl: The father of Bayesian networks

Turing Award 2011: “for fundamental contributions to AI

through the development of a calculus for probabilistic and causal reasoning”.

Joost-Pieter Katoen Probabilistic Programming 5/42

Probabilistic Programming What are Bayesian networks?

Example

How likely does a student end up with a bad mood after getting

a bad grade for an easy exam, given that she is well prepared?

Joost-Pieter Katoen Probabilistic Programming 11/42

t t

00

inferences

Probabilistic Programming What are Bayesian networks?

Example

Pr(D = 0,G = 0,M = 0 | P = 1) =
Pr(D = 0,G = 0,M = 0,P = 1)

Pr(P = 1)

=
0.6 ·0.5 ·0.9 ·0.3

0.3
= 0.27

Joost-Pieter Katoen Probabilistic Programming 12/42

Probabilistic Programming What are Bayesian networks?

The benefits of Bayesian networks

Bayesian networks provide a compact representation of joint distribution functions

if the dependencies between the random variables are sparse.

Another advantage of BNs is

the explicit representation of conditional independencies.

Joost-Pieter Katoen Probabilistic Programming 14/42

Probabilistic Programming Inference

Probabilistic inference

The probabilistic inference problem:

Let BN B with vertex set V , the evidence E → V and the questions Q → V .

Let e be the value of E, and q be the value of Q.

(Exact) probabilistic inference is to determine the conditional probability

Pr(Q = q | E = e) =
Pr(Q = q↑E = e)

Pr(E = e)
.

Joost-Pieter Katoen Probabilistic Programming 34/42

Probabilistic Programming Inference

The complexity class PP

NP → PP (as SAT lies in PP) and coNP → PP (as PP is closed under complement). PP

is contained in PSPACE (as there is a polynomial-space algorithm for MAJSAT).

PP is comparable to the class #P — the counting variant of NP — the class of function

problems “compute f (x)” where f is the number of accepting runs of an NTM running

in polynomial time.

Joost-Pieter Katoen Probabilistic Programming 38/42

Eo

Botz

Probabilistic Programming Inference

Complexity of probabilistic inference

Decision variants of probabilistic inference. For probability p ↓Q↔ [0,1):

↭ does Pr(Q = q | E = e) > p? TI

↭ special case: Pr(E = e) > p? STI

Complexity of probabilistic inference [Cooper, 1990]

The decision problems TI and STI are PP-complete.

Proof.
1. Hardness: by a reduction of MAJSAT to STI (since STI is a special case of TI,

MAJSAT is reducible to TI).

2. Membership: To show TI ↓ PP, a polynomial-time algorithm is given that guesses

a solution to TI while ensuring that the guess is correct with probability > 1/2.

Joost-Pieter Katoen Probabilistic Programming 36/42TEGEL

X = { xp , Xz ,
X

,
} vs X → { ttsff]

⑦
2g, = Ex,

V - xz) n (xz V - xz)

• is satisfiable
. e.g ,

V (x
,) = vlxz) = tt

• satisfying assignments :

Kp Xz ×3

7 7 O

¢ MDJSAT
7 O O

O O O

7 r a②22 = (x
,

V 7×2) n (x , v nxz)

• all four assignments with E MAJ SAT

V (x
,

)= n are satisfying
+ the assignment VC g) = O

,
Vcxz) -0

,
who)=o

Probabilistic Programming Inference by program verification

Rejection sampling

For a given Bayesian network and some evidence:

1. Sample from the joint distribution described by the BN

2. If the sample complies with the evidence, accept the sample and halt

3. If not, repeat sampling (that is: go back to step 1.)

If this procedure is applied N times, N iid-samples result.

Potential problem: What happens if the evidence has low probability? E.g., zero.

Joost-Pieter Katoen Probabilistic Programming 18/48

✓
E

To

Probabilistic Programming Inference by program verification

Removal of conditioning = rejection sampling

Recall conditioning removal:

x := 0 [p] x := 1;
y := 0 [p] y := 1;
observe(x != y)

sx, sy := x, y; flag := true;
while(flag) {

x, y := sx, sy; flag := false;
x := 0 [p] x := 1;
y := 0 [p] y := 1;
flag := (x = y)

}

This program transformation replaces observe-statements by loops.

The resulting loopy programs represent rejection sampling.

Joost-Pieter Katoen Probabilistic Programming 19/48

#m→

Probabilistic Programming Inference by program verification

Student exam’s mood example

How likely does a student end up with a bad mood after getting

a bad grade for an easy exam, given that she is well prepared?

Joost-Pieter Katoen Probabilistic Programming 20/48

Probabilistic Programming Inference by program verification

Bayesian networks as programs
⌐ Take a topological sort of the BN’s vertices, e.g., D; P; G ; M

⌐ Map each conditional probability table (aka: node) to a program, e.g.:

if (xD = 0 && xP = 0) {
xG := 0 [0.95] xG := 1
} else if (xD = 1 && xP = 1) {
xG := 0 [0.05] xG := 1
} else if (xD = 0 && xP = 1) {
xG := 0 [0.5] xG := 1
} else if (xD = 1 && xP = 0) {
xG := 0 [0.6] xG := 1

}

⌐ Condition on the evidence, e.g., for P = 1 (“well-prepared”):

repeat { progD ; progP; progG ; progM } until (P=1)

Joost-Pieter Katoen Probabilistic Programming 21/48

Z A ;Dobesity

Probabilistic Programming Inference by program verification

Soundness

For BN B with evidence E ≜ V and value v for vertex v :

wp[[prog(B, e)]] ⌊⌊⌊ ⨅
v∈V \E

xv = v
⌋⌋⌋⌈

wp of the BN program of B

= Pr
⌊⌊⌊ ⨅

v∈V \E
v = v ⌈ ⨅

e∈E

e = e
⌋⌋⌈

joint distribution of BN B

where prog(B, e) equals repeat progB until ⌈⨆
e∈E

xe = e⌈.
Thus: inference of BNs can be done using wp-reasoning

Joost-Pieter Katoen Probabilistic Programming 23/48

=p ;¥ene

Probabilistic Programming Inference by program verification

Inference by wp-reasoning

Ergo: exact Bayesian inference can be done by wp-reasoning, e.g.,

wp[[Pmood]]⌈[xD = 0 ⨼ xG = 0 ⨼ xM = 0]⌈ =
Pr(D = 0, G = 0, M = 0, P = 1)

Pr(P = 1) = 0.27

Joost-Pieter Katoen Probabilistic Programming 24/48

Proof rules for probabilistic loops

HOW TO TREAT LOOPS?

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 23/61

SYNTAX FOR EXPECTATIONS

STL

t

Bagg

&
gtfo

Probabilistic Programming Motivation

The runtime of a probabilistic program

The runtime of a probabilistic program depends

on the input and

on the internal randomness of the program.

Joost-Pieter Katoen Probabilistic Programming 4/51

-

•

Probabilistic Programming Motivation

Expected runtimes

Expected run-time of program P on input s:

•

Â
i=1

i ·Pr

✓
“P terminates after

i steps on input s”

◆

Joost-Pieter Katoen Probabilistic Programming 6/51

-

Khao

St

Probabilistic Programming Motivation

Expected runtimes

Expected run-time of program P on input s:

•

Â
i=1

i ·Pr

✓
“P terminates after

i steps on input s”

◆

Joost-Pieter Katoen Probabilistic Programming 6/51

Counting loops is incorrect
-

expected ,

runtime

pi ← D

up EPD (×)
I

Kkk

g-

Probabilistic Programming Motivation

Expected runtimes

Expected run-time of program P on input s:

•

Â
i=1

i ·Pr

✓
“P terminates after

i steps on input s”

◆

Joost-Pieter Katoen Probabilistic Programming 6/51

-

Solution : slightly adapt definition of up

ert TL while (e) { PIT (t) =

Lfp X. (I t [D. ert EPD(X) t Eve] . t)
Alto

I
"

counts
"

the # tooo " '

,

That's all !

to

Probabilistic Programming Proving positive almost-sure termination

Positive almost-sure termination

For every pGCL program P and input state s:

ert[[P]](0)(s) < •| {z }
positive a.s-termination on s

implies wp[[P]](1)(s) = 1| {z }
a.s.–termination on s

Moreover:

ert[[P]](0) < •| {z }
universal positive a.s–termination

implies wp[[P]](1) = 1| {z }
universal a.s.–termination

Joost-Pieter Katoen Probabilistic Programming 40/51

IT

g-

Probabilistic Programming Motivation

Coupon collector’s problem

Joost-Pieter Katoen Probabilistic Programming 7/51

o
O

O

O

Probabilistic Programming Motivation

Coupon collector’s problem

cp := [0,...,0]; // no coupons yet
i := 1; // coupon to be collected next
x := 0: // number of coupons collected
while (x < N) {

while (cp[i] != 0) {
i := uniform(1..N) // next coupon

}
cp[i] := 1; // coupon i obtained
x++; // one coupon less to go

}

The expected runtime of this program is in �(N· logN).

Joost-Pieter Katoen Probabilistic Programming 8/51

=

Probabilistic Programming How long to sample a Bayesian network?

How long to sample a BN?

[Gordon, Nori, Henzinger, Rajamani, 2014]

“the main challenge in this setting [sampling-based approaches] is that many

samples that are generated during execution are ultimately rejected for not

satisfying the observations."

Joost-Pieter Katoen Probabilistic Programming 30/48

Probabilistic Programming How long to sample a Bayesian network?

Sampling time of a toy Bayesian network

This BN is parametric (in a)

How many samples are needed on average

for a single iid-sample for evidence G = 0?

Joost-Pieter Katoen Probabilistic Programming 32/48

Probabilistic Programming How long to sample a Bayesian network?

Sampling time for example BN

Rejection sampling for G = 0 requires
200a

2 ⌐ 40a ⌐ 460

89a
2 ⌐ 69a ⌐ 21

samples:

For a ≜ [0.1, 0.78], < 18 samples; for a ∈ 0.98, 100 samples are needed

For real-life BNs, one may exceed 10
15

(or more) samples

Joost-Pieter Katoen Probabilistic Programming 33/48

M

Probabilistic Programming The expected runtime transformer

How Long to Simulate a Bayes Network?

Benchmark BNs from www.bnlearn.com

BN ⌊V ⌊ ⌊E ⌊ aMB ⌊O⌊ EST time (s)

hailfinder 56 66 3.54 5 5 10
5

0.63

hepar2 70 123 4.51 1 1.5 10
2

1.84

win95pts 76 112 5.92 3 4.3 10
5

0.36

pathfinder 135 200 3.04 7 ⨼ 5.44

andes 223 338 5.61 3 5.2 10
3

1.66

pigs 441 592 3.92 1 2.9 10
3

0.74

munin 1041 1397 3.54 5 ⨼ 1.43

aMB = average Markov Blanket, a measure of independence in BNs

Joost-Pieter Katoen Probabilistic Programming 45/48

b
served

variables

red simulation
time

µ
°

I
expect

I
Verification

time

Automation

Outlook: a probabilistic Dafny?

Caesar: A verification infrastructure for probabilistic programs

caesarverifier.org

Joost-Pieter Katoen Probabilistic Programs. Verified. Push Button. 60/61

Bigfoots
ppp

Tt et

