Understanding and using SAT and SMT solvers

Erika Ábrahám RWTH Aachen University, Germany

14th Summer School on Formal Techniques May 24-30, 2025

There are three types of Xmas presents Santa Claus can make.

- Santa Claus wants to reduce the overhead by making only two types.
- He needs at least 100 presents.
- He needs at least 5 of either type 1 or type 2.
- He needs at least 10 of the third type.
- Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
- Santa Claus is late, and he has only 3 hours left.
- Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
- He has 300 EUR for presents in total.

William Erika Ábrahám - 2 / 105

There are three types of Xmas presents Santa Claus can make.

- Santa Claus wants to reduce the overhead by making only two types.
- He needs at least 100 presents.
- He needs at least 5 of either type 1 or type 2.
- He needs at least 10 of the third type.
- Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
- Santa Claus is late, and he has only 3 hours left.
- Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
- He has 300 EUR for presents in total.

$$(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0) \land p_1 + p_2 + p_3 \ge 100 \land$$

$$(p_1 \ge 5 \lor p_2 \ge 5) \land p_3 \ge 10 \land p_1 + 2p_2 + 5p_3 \le 180 \land$$

$$3p_1 + 2p_2 + p_3 \le 300$$

2/105 Erika Ábrahám -

There are three types of Xmas presents Santa Claus can make.

- Santa Claus wants to reduce the overhead by making only two types.
- He needs at least 100 presents.
- He needs at least 5 of either type 1 or type 2.
- He needs at least 10 of the third type.
- Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
- Santa Claus is late, and he has only 3 hours left.
- Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
- He has 300 EUR for presents in total.

$$(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0) \land p_1 + p_2 + p_3 \ge 100 \land$$

$$(p_1 \ge 5 \lor p_2 \ge 5) \land p_3 \ge 10 \land p_1 + 2p_2 + 5p_3 \le 180 \land$$

$$3p_1 + 2p_2 + p_3 \le 300$$

Logic:

There are three types of Xmas presents Santa Claus can make.

- Santa Claus wants to reduce the overhead by making only two types.
- He needs at least 100 presents.
- He needs at least 5 of either type 1 or type 2.
- He needs at least 10 of the third type.
- Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
- Santa Claus is late, and he has only 3 hours left.
- Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
- He has 300 EUR for presents in total.

$$(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0) \land p_1 + p_2 + p_3 \ge 100 \land$$

$$(p_1 \ge 5 \lor p_2 \ge 5) \land p_3 \ge 10 \land p_1 + 2p_2 + 5p_3 \le 180 \land$$

$$3p_1 + 2p_2 + p_3 \le 300$$

Logic: Linear integer arithmetic.

3 / 105 Erika Ábrahám -

Eve is eager to make scientific visits.

- She has 100 travel wishes A_1, \ldots, A_{100} .
- She is allowed to make only 5 travels.
- She wants to be physically at A_1 .
- To coordinate a project, she needs to visit either A_2 or A_3 .
- Travel A_i costs C_i EUR.
- \blacksquare Eve can spend up to C EUR.
- \blacksquare Travel A_i takes T_i days.
- Eve wants to travel at least *T* days.

3 / 105 Erika Ábrahám -

Eve is eager to make scientific visits.

- She has 100 travel wishes A_1, \ldots, A_{100} .
- She is allowed to make only 5 travels.
- She wants to be physically at A_1 .
- To coordinate a project, she needs to visit either A_2 or A_3 .
- Travel A_i costs C_i EUR.
- \blacksquare Eve can spend up to C EUR.
- Travel A_i takes T_i days.
- Eve wants to travel at least T days.

$$\left(\bigwedge_{i=1}^{100} \left((a_i = 0 \land c_i = 0 \land t_i = 0) \lor (a_i = 1 \land c_i = C_i \land t_i = T_i) \right) \right) \land \left(\sum_{i=1}^{100} a_i \le 5 \right) \land (a_1 = 1) \land (a_2 = 1 \lor a_3 = 1) \land \left(\sum_{i=1}^{100} c_i \le C \right) \land \left(\sum_{i=1}^{100} t_i \ge T \right) \right)$$

Brika Ábrahám - 3 / 105

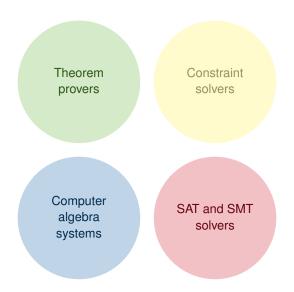
Eve is eager to make scientific visits.

- She has 100 travel wishes A_1, \ldots, A_{100} .
- She is allowed to make only 5 travels.
- She wants to be physically at A_1 .
- To coordinate a project, she needs to visit either A_2 or A_3 .
- Travel A_i costs C_i EUR.
- Eve can spend up to C EUR.
- \blacksquare Travel A_i takes T_i days.
- Eve wants to travel at least T days.

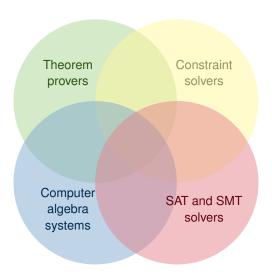
$$\left(\bigwedge_{i=1}^{100} \left((a_i = 0 \land c_i = 0 \land t_i = 0) \lor (a_i = 1 \land c_i = C_i \land t_i = T_i) \right) \right) \land \left(\sum_{i=1}^{100} a_i \le 5 \right) \land (a_1 = 1) \land (a_2 = 1 \lor a_3 = 1) \land \left(\sum_{i=1}^{100} c_i \le C \right) \land \left(\sum_{i=1}^{100} t_i \ge T \right) \right)$$

Logic: Mixed integer linear arithmetic.

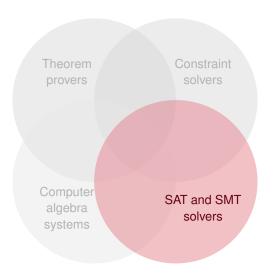
Some technologies for satisfiability checking



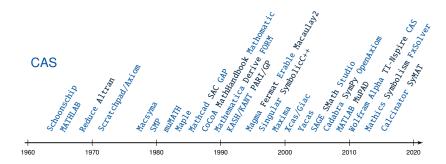
Some technologies for satisfiability checking



Some technologies for satisfiability checking

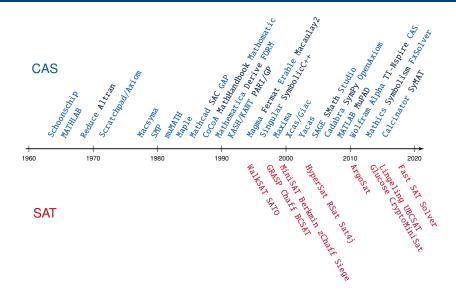


Tool development



5 / 105 Erika Ábrahám -

Tool development



Erika Ábrahám - 5 / 105

Satisfiability checking for propositional logic

Success story: SAT-solving

- Practical problems with millions of variables are solvable.
- A wide range of applications, e.g., verification, synthesis, combinatorial optimisation, etc.

6/105 Erika Ábrahám -

Satisfiability checking for propositional logic

Success story: SAT-solving

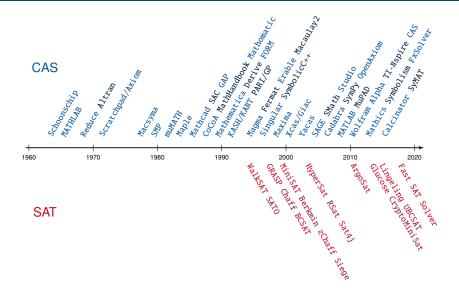
- Practical problems with millions of variables are solvable.
- A wide range of applications, e.g., verification, synthesis, combinatorial optimisation, etc.

Community support:

- Standard input language.
- Large benchmark library.
- Competitions since 2002.
- SAT Live! forum as community platform, dedicated conferences, journals, etc.

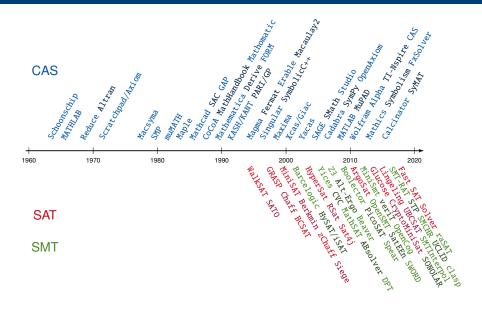
6 / 105 Erika Ábrahám -

Tool development



Frika Ábrahám - 7 / 105

Tool development



William Erika Ábrahám - 7 / 105

Satisfiability modulo theories (SMT) solving

Satisfiability modulo theories (SMT) solving:

- Propositional logic is sometimes too weak for modelling.
- Increase expressiveness: quantifier-free (QF) fragments of first-order logic over various theories.

8 / 105

Satisfiability modulo theories (SMT) solving

Satisfiability modulo theories (SMT) solving:

- Propositional logic is sometimes too weak for modelling.
- Increase expressiveness: quantifier-free (QF) fragments of first-order logic over various theories.

Community support:

- SMT-LIB: standard input language since 2004.
- Large (~ 250.000) benchmark library.
- Competitions since 2005.

8/105 Erika Ábrahám - 8/105

Contents

- SAT solving
 - Propositional logic
 - DPLL+CDCL SAT solving
 - Propositional encoding examples
 - Hands-on
- SMT solving
 - Approaches
 - SMT-RAT
 - SMT-LIB
 - SMT solvers as integrated engines
 - Future challenges
 - Hands-on

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$.

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

$$\perp$$
 := $(a \land \neg a)$

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

```
\bot := (a \land \neg a) 
 \top :=
```

Erika Ábrahám - 10 / 105

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

$$\bot \qquad := (a \land \neg a)$$

$$\top \qquad := (a \lor \neg a)$$

Titulian Erika Ábrahám - 10 / 105

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

```
 \begin{array}{ccc} \bot & & \coloneqq (a \land \neg a) \\ \top & & \coloneqq (a \lor \neg a) \\ ( & \varphi_1 & \lor & \varphi_2 & ) \coloneqq \end{array}
```

Tivisa Érika Ábrahám -

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

```
 \begin{array}{ccc} \bot & := (a \land \neg a) \\  & \top & := (a \lor \neg a) \\  & ( \varphi_1 & \lor & \varphi_2 & ) := \neg((\neg \varphi_1) \land (\neg \varphi_2)) \end{array}
```

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

```
 \begin{array}{cccc} \bot & & \coloneqq (a \land \neg a) \\ & \top & & \coloneqq (a \lor \neg a) \\ \\ ( & \varphi_1 & \lor & \varphi_2 & ) \coloneqq \neg((\neg \varphi_1) \land (\neg \varphi_2)) \\ ( & \varphi_1 & \to & \varphi_2 & ) \coloneqq \end{array}
```

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

```
\begin{array}{cccc}
 & \bot & := (a \land \neg a) \\
 & \top & := (a \lor \neg a) \\
 & ( \varphi_1 \lor \varphi_2 ) := \neg((\neg \varphi_1) \land (\neg \varphi_2)) \\
 & ( \varphi_1 \to \varphi_2 ) := ((\neg \varphi_1) \lor \varphi_2) \\
 & ( \varphi_1 \leftrightarrow \varphi_2 ) :=
\end{array}
```

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \land \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

```
\begin{array}{cccc}
\bot & := (a \land \neg a) \\
 & \top & := (a \lor \neg a)
\end{array}

( \varphi_1 \lor \varphi_2 ) := \neg(\neg \varphi_1) \land (\neg \varphi_2) \\
( \varphi_1 \to \varphi_2 ) := ((\neg \varphi_1) \lor \varphi_2) \\
( \varphi_1 \leftrightarrow \varphi_2 ) := ((\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1))
```

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

```
\begin{array}{cccc}
 & \bot & := (a \land \neg a) \\
 & \top & := (a \lor \neg a) \\
 & ( \varphi_1 \lor \varphi_2 ) := \neg((\neg \varphi_1) \land (\neg \varphi_2)) \\
 & ( \varphi_1 \to \varphi_2 ) := ((\neg \varphi_1) \lor \varphi_2) \\
 & ( \varphi_1 \leftrightarrow \varphi_2 ) := ((\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1)) \\
 & ( \varphi_1 \oplus \varphi_2 ) :=
\end{array}
```

William Erika Ábrahám - 10 / 105

Abstract syntax of well-formed propositional logic formulae:

$$\varphi := a \mid (\neg \varphi) \mid (\varphi \wedge \varphi)$$

where AP is a set of (atomic) propositions (Boolean variables) and $a \in AP$. Syntactic sugar:

```
\begin{array}{cccc}
\bot & := (a \land \neg a) \\
 & \top & := (a \lor \neg a)
\end{array}

( \varphi_1 \lor \varphi_2 ) := \neg((\neg \varphi_1) \land (\neg \varphi_2))

( \varphi_1 \to \varphi_2 ) := ((\neg \varphi_1) \lor \varphi_2)

( \varphi_1 \leftrightarrow \varphi_2 ) := ((\varphi_1 \to \varphi_2) \land (\varphi_2 \to \varphi_1))

( \varphi_1 \oplus \varphi_2 ) := (\varphi_1 \leftrightarrow (\neg \varphi_2))
```

William Erika Ábrahám - 10 / 105

Semantics of propositional logic

■ Truth tables define the semantics (=meaning) of the operators.

They can be used to define the semantics of formulae inductively over their structure.

Semantics of propositional logic

- Truth tables define the semantics (=meaning) of the operators.
 They can be used to define the semantics of formulae inductively over their structure.
- Convention: 0= false, 1= true

STUVES Erika Ábrahám -

Semantics of propositional logic

- Truth tables define the semantics (=meaning) of the operators.
 They can be used to define the semantics of formulae inductively over their structure.
- Convention: 0= false, 1= true

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$	$p \oplus q$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	0	0	1
1	1	0	1	1	1	1	0

Tily Erika Ábrahám - 11 / 105

Semantics of propositional logic

- Truth tables define the semantics (=meaning) of the operators.
 They can be used to define the semantics of formulae inductively over their structure.
- Convention: 0= false, 1= true

p	q	$\neg p$	$p \wedge q$	$p \lor q$	$p \rightarrow q$	$p \leftrightarrow q$	$p \oplus q$
0	0	1	0	0	1	1	0
0	1	1	0	1	1	0	1
1	0	0	0	1	0	0	1
1	1	0	1	1	1	1	0

Each possible assignment is covered by a line of the truth table.

 α satisfies φ iff in the line for α and the column for φ the entry is 1.

Erika Ábrahám -

Conjunctive normal form

- A literal is either a variable or the negation of a variable.
- A clause is a disjunction of literals.
- A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses.

Trika Ábrahám - 12 / 105

Conjunctive normal form

- A literal is either a variable or the negation of a variable.
- A clause is a disjunction of literals.
- A formula in Conjunctive Normal Form (CNF) is a conjunction of clauses.
- Every propositional logic formula can be converted to an equi-satisfiable CNF in linear time and space on the cost of (linearly many) new variables.

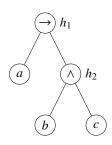
Trika Ábrahám - 12 / 105

Tseitin's CNF encoding

Consider the formula $\varphi = (a \rightarrow (b \land c))$.

Tseitin's encoding:

$$(h_1 \leftrightarrow (a \rightarrow h_2)) \land (h_2 \leftrightarrow (b \land c)) \land (h_1)$$

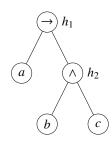


Tseitin's CNF encoding

Consider the formula $\varphi = (a \rightarrow (b \land c))$.

Tseitin's encoding:

$$(h_1 \leftrightarrow (a \rightarrow h_2)) \land (h_2 \leftrightarrow (b \land c)) \land (h_1)$$



■ Each node's encoding has a CNF representation with 3 or 4 clauses.

$$h_1 \leftrightarrow (a \rightarrow h_2)$$
 in CNF: $(h_1 \lor a) \land (h_1 \lor \neg h_2) \land (\neg h_1 \lor \neg a \lor h_2)$
 $h_2 \leftrightarrow (b \land c)$ in CNF: $(\neg h_2 \lor b) \land (\neg h_2 \lor c) \land (h_2 \lor \neg b \lor \neg c)$

Tika Ábrahám - 13 / 105

Contents

- SAT solving
 - Propositional logic
 - DPLL+CDCL SAT solving
 - Propositional encoding examples
 - Hands-on
- SMT solving
 - Approaches
 - SMT-RAT
 - SMT-LIB
 - SMT solvers as integrated engines
 - Future challenges
 - Hands-on

14 / 105 Erika Ábrahám - 14 / 105

Satisfiability problem

Given:

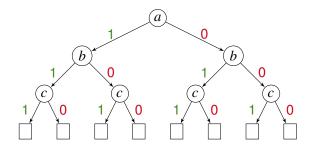
■ Propositional logic formula φ in CNF.

Question:

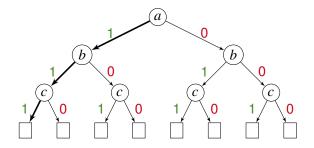
Is φ satisfiable? (Is there a model for φ ?)

$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$

$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$

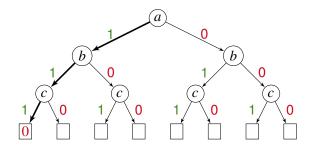


$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$



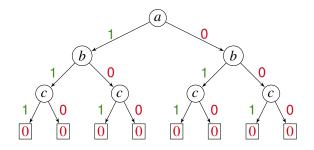
16 / 105 Erika Ábrahám - 16 / 105

$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$

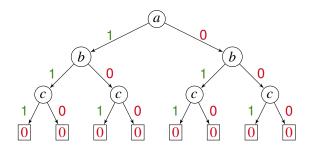


16 / 105 Erika Ábrahám - 16 / 105

$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$



$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$



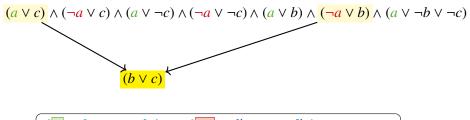
unsatisfiable problem in n variables

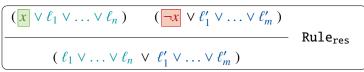
 \rightarrow ALWAYS 2^n assignments need to be tested

$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$

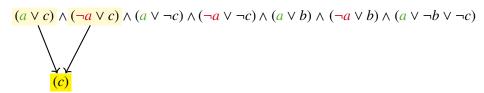
$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$

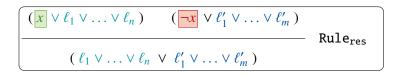
$$\frac{(\cancel{x} \lor \ell_1 \lor \dots \lor \ell_n) \quad (\neg \cancel{x} \lor \ell'_1 \lor \dots \lor \ell'_m)}{(\ell_1 \lor \dots \lor \ell_n \lor \ell'_1 \lor \dots \lor \ell'_m)} \quad \text{Rule}_{\text{res}}$$



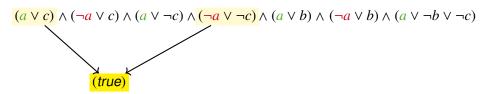


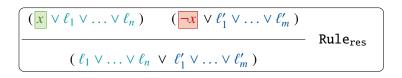
16 / 105 Erika Ábrahám - 16 / 105





16 / 105





16 / 105 Erika Ábrahám - 16 / 105

$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$

$$\frac{(\boxed{x} \lor \ell_1 \lor \dots \lor \ell_n) \qquad (\boxed{\neg x} \lor \ell'_1 \lor \dots \lor \ell'_m)}{(\ell_1 \lor \dots \lor \ell_n \lor \ell'_1 \lor \dots \lor \ell'_m)} \quad \text{Rule}_{\text{res}}$$

$$\exists x. \quad C \land C_x \land C_{\neg x} \\ = \\ C \land \bigwedge_{c_x \in C_x} \bigwedge_{c_{\neg x} \in C_{\neg x}} resolvent(c_x, c_{\neg x}, x)$$

$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$

$$(true) \quad (true) \quad (b \lor \neg c) \quad (b \lor \neg c) \quad (b \lor \neg c)$$

$$\frac{(x \lor \ell_1 \lor \dots \lor \ell_n) \quad (\neg x \lor \ell'_1 \lor \dots \lor \ell'_m)}{(\ell_1 \lor \dots \lor \ell_n \lor \ell'_1 \lor \dots \lor \ell'_m)} \quad \text{Rule}_{\text{res}}$$

$$\exists x. \qquad C \quad \land \quad C_x \quad \land \quad \begin{array}{c} C_{\neg x} \\ \equiv \\ C \quad \land \quad \bigwedge_{c_x \in C_x} \quad \bigwedge_{c_{\neg x} \in C_{\neg x}} resolvent(c_x, c_{\neg x}, x) \end{array}$$

$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (\neg a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$

$$(b \lor \neg c) \qquad (true) \qquad (true) \qquad (true) \qquad (true) \qquad (true) \qquad (true) \qquad (b \lor \neg c) \qquad (b \lor \neg c)$$

$$\exists x. \quad C \land C_x \land C_{\neg x}$$

$$\equiv$$

$$C \land \bigwedge_{c_x \in C_x} \bigwedge_{c_{\neg x} \in C_{\neg x}} resolvent(c_x, c_{\neg x}, x)$$

Historia Ábrahám - 16 / 105

$$(a \lor c) \land (\neg a \lor c) \land (a \lor \neg c) \land (a \lor b) \land (\neg a \lor b) \land (a \lor \neg b \lor \neg c)$$

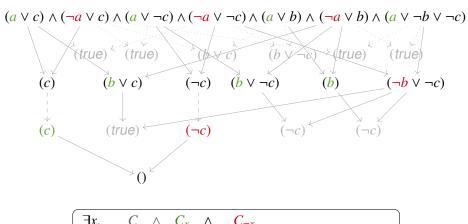
$$(true) \quad (true) \quad (b \lor \neg c) \quad (b \lor \neg c)$$

$$(c) \quad (b \lor c) \quad (\neg c) \quad (b \lor \neg c) \quad (b) \quad (\neg b \lor \neg c)$$

$$(c) \quad (true) \quad (\neg c) \quad ($$

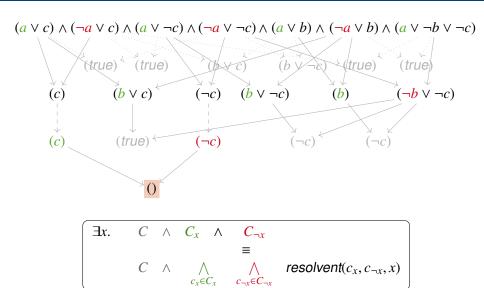
$$\exists x. \quad C \quad \wedge \quad C_x \quad \wedge \quad \begin{array}{c} C_{\neg x} \\ \equiv \\ C \quad \wedge \quad \bigwedge \\ C_{x} \in C_x \\ \end{array} \quad \begin{array}{c} resolvent(c_x, c_{\neg x}, x) \end{array}$$

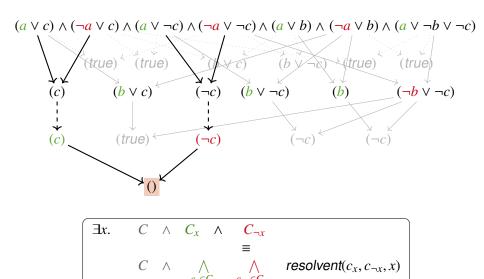
Erika Ábrahám -



$$\exists x. \quad C \quad \land \quad C_x \quad \land \quad \begin{array}{c} C_{\neg x} \\ \equiv \\ C \quad \land \quad \bigwedge_{c_x \in C_x} \quad \bigwedge_{c_{\neg x} \in C_{\neg x}} resolvent(c_x, c_{\neg x}, x) \end{array}$$

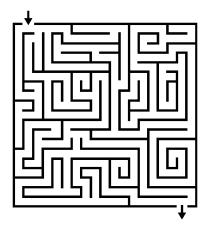
Historia Ábrahám - 16 / 105





Tilyan Erika Ábrahám -

[Davis et al., '60/61] [Marques-Silva et al., '96]

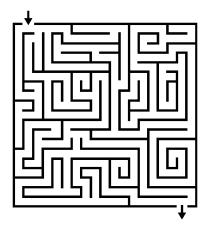


[Davis et al., '60/61] [Marques-Silva et al., '96]

Proof system



[Davis et al., '60/61] [Marques-Silva et al., '96]



[Davis et al., '60/61] [Marques-Silva et al., '96]

Exploration

[Davis et al., '60/61] [Marques-Silva et al., '96]

Exploration

Look-ahead

[Davis et al., '60/61] [Marques-Silva et al., '96]

Exploration

Look-ahead

Proof system

The DPLL+CDCL algorithm

```
if (!BCP()) return UNSAT;
while (true)
{
     if (!decide()) return SAT;
     while (!BCP())
        if (!resolve_conflict()) return UNSAT;
}
```

The DPLL+CDCL algorithm

```
if (!BCP()) return UNSAT;
while (true)
{
    if (!decide()) return SAT;
    while (!BCP())
    if (!resolve_conflict()) return UNSAT;
}
```

Boolean constraint propagation. Return false if reached a conflict.

The DPLL+CDCL algorithm

```
Choose the next variable
                                                 and value.
                                                  Return false if all variables
                if (!BCP()) return UNSAT;
                                                 are assigned.
                while (true)
                       if (!decide()) return SAT;
                       while (!BCP())
                             if (!resolve_conflict()) return UNSAT;
Boolean constraint propagation.
Return false if reached a conflict.
```

The DPLL+CDCL algorithm

```
Choose the next variable
                                                 and value.
                                                  Return false if all variables
                if (!BCP()) return UNSAT;
                                                 are assigned.
                while (true)
                       if (!decide()) return SAT;
                       while (!BCP())
                             if (!resolve_conflict()) return UNSAT;
                                           Conflict resolution and
Boolean constraint propagation.
                                           backtracking. Return false
Return false if reached a conflict.
                                           if impossible.
```

Erika Ábrahám - 18 / 105

Status of a clause

■ Assume in the following: all literals in a clause have different variables

Frika Ábrahám - 19 / 105

Status of a clause

Assume in the following: all literals in a clause have different variables

Given a (partial) assignment, a clause can be

satisfied: at least one literal is satisfied

unsatisfied: all literals are assigned but none are statisfied

unit: all but one literals are assigned but none are satisfied

unresolved: all other cases

Example:

x_1	x_2	x_3	$c = (x_1 \lor x_2 \lor x_3)$
1	0		satisfied
0	0	0	unsatisfied
0	0		unit
	0		unresolved

BCP: Unit clauses are used to imply consequences of decisions.

19 / 105

Status of a clause

- Assume in the following: all literals in a clause have different variables
- Given a (partial) assignment, a clause can be

satisfied: at least one literal is satisfied

unsatisfied: all literals are assigned but none are statisfied

unit: all but one literals are assigned but none are satisfied

unresolved: all other cases

Example:

x_1	x_2	x_3	$c = (x_1 \lor x_2 \lor x_3)$
1	0		satisfied
0	0	0	unsatisfied
0	0		unit
	0		unresolved

BCP: Unit clauses are used to imply consequences of decisions.

Some notations:

Decision Level (DL) is a counter for decisions

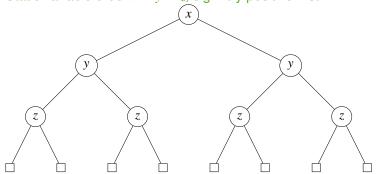
Antecedent(ℓ): unit clause implying the value of literal ℓ (nil if decision)

Frika Ábrahám -

$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

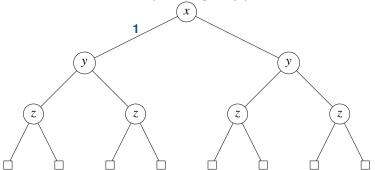
$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

Static variable order x < y < z, sign: try positive first



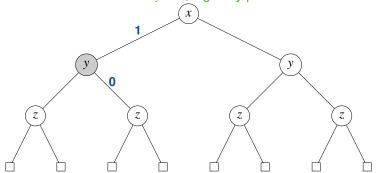
$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

Static variable order x < y < z, sign: try positive first



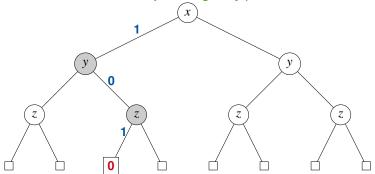
$$\underbrace{(\neg x \lor y \lor \boxed{z})}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

Static variable order x < y < z, sign: try positive first



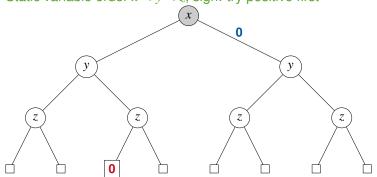
$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

Static variable order x < y < z, sign: try positive first



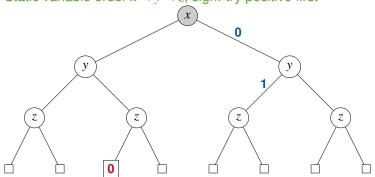
$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

Static variable order x < y < z, sign: try positive first



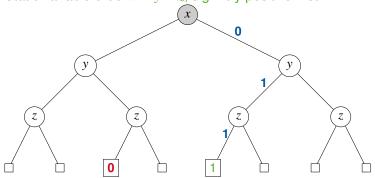
$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

Static variable order x < y < z, sign: try positive first



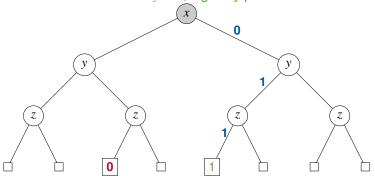
$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

Static variable order x < y < z, sign: try positive first



$$\underbrace{(\neg x \lor y \lor z)}_{c_1} \land \underbrace{(y \lor \neg z)}_{c_2} \land \underbrace{(\neg x \lor \neg y)}_{c_3}$$

Static variable order x < y < z, sign: try positive first



Efficient propagation with the watched literal scheme.

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b) \land (\neg b \lor c) \land (\neg b \lor \neg c)$$

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b) \land (\neg b \lor c) \land (\neg b \lor \neg c)$$

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b) \land (\neg b \lor c) \land (\neg b \lor \neg c)$$

 \mathbb{B} -decision a = false

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b) \land (\neg b \lor c) \land (\neg b \lor \neg c)$$

B-propagate

 \mathbb{B} -decision a = false

B-propagate

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b) \land (\neg b \lor c) \land (\neg b \lor \neg c)$$

B-propagate -

 $\ensuremath{\mathbb{B}}$ -decision a=false $\ensuremath{\mathbb{B}}$ -propagate b=true

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b) \land (\neg b \lor c) \land (\neg b \lor \neg c)$$

B-propagate -

 $egin{align*} \mathbb{B} ext{-decision} & a = \textit{false} \\ \mathbb{B} ext{-propagate} & b = \textit{true} \\ \end{array}$

c = true

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b) \land (\neg b \lor c) \land (\neg b \lor \neg c)$$

B-conflict resolution

 $\ensuremath{\mathbb{B}}$ -decision a=false $\ensuremath{\mathbb{B}}$ -propagate b=true

c = true

c = uuc

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b) \land (\neg b \lor c) \land (\neg b \lor \neg c)$$

B-propagate

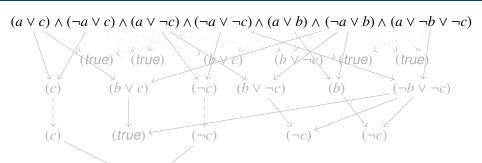
 \mathbb{B} -decision a = false

 \mathbb{B} -propagate b = true

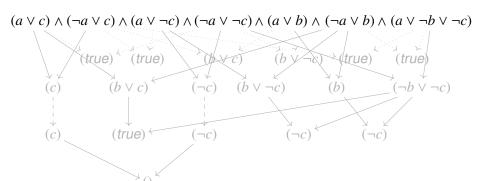
c = true

B-conflict resolution

$$\frac{(\neg b \vee \neg c) (\neg b \vee c)}{(\neg b)}$$

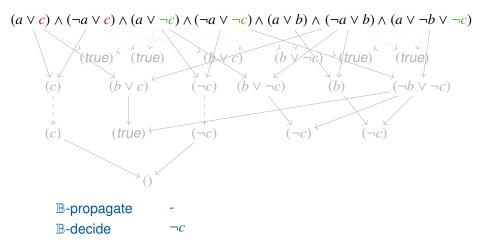


22 / 105 Erika Ábrahám - 22 / 105

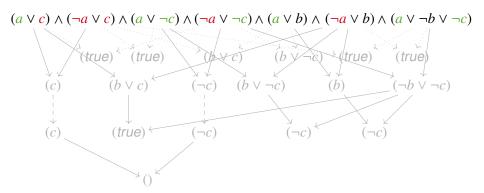


B-propagate

22 / 105 Erika Ábrahám - 22 / 105



Crika Ábrahám - 22 / 105

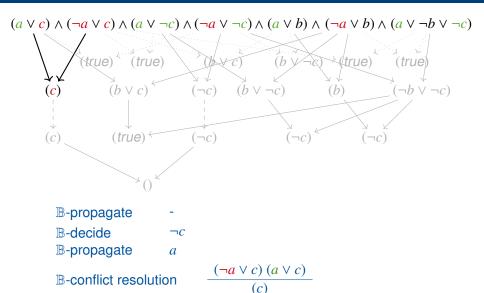


B-propagate

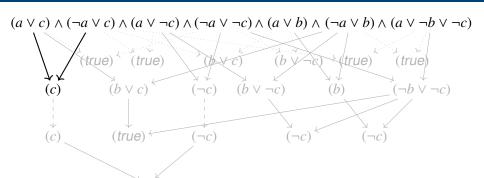
B-decide ¬c

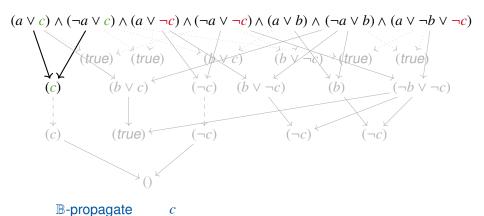
 \mathbb{B} -propagate a

CTU MASS Erika Ábrahám - 22 / 105

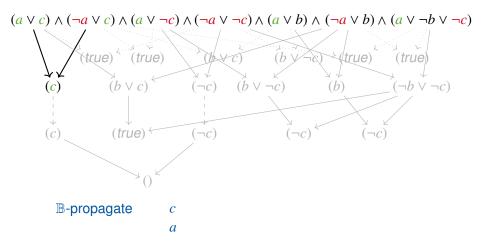


CTU MASS Erika Ábrahám - 22 / 105

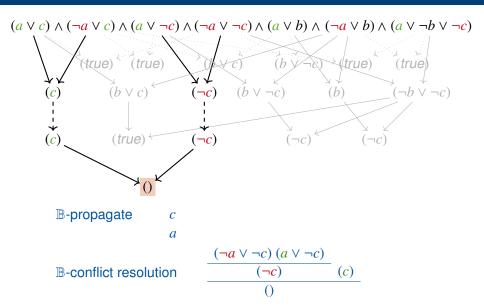




Crika Ábrahám - 22 / 105

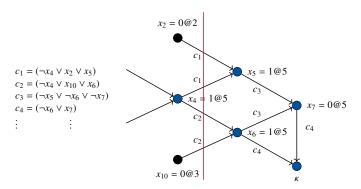


22 / 105 Erika Ábrahám - 22 / 105



Conflict clauses and (binary) resolution

Consider the following example:

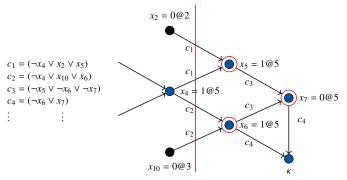


■ Asserting conflict clause: $c_5: (x_2 \lor \neg x_4 \lor x_{10})$

William Erika Ábrahám - 23 / 105

Conflict clauses and (binary) resolution

■ Assigment order: x_4, x_5, x_6, x_7 Conflict clause: $c_5 : (x_2 \lor \neg x_4 \lor x_{10})$



- Starting with the conflicting clause, apply resolution with the antecedent of the last assigned literal, until we get an asserting clause:
 - T1 = Res $(c_4, c_3, x_7) = (\neg x_5 \lor \neg x_6)$
 - T2 = Res(T1, c_2 , x_6) = (¬ x_4 ∨ ¬ x_5 ∨ x_{10})
 - T3 = Res(T2, c_1 , x_5) = ($x_2 \lor \neg x_4 \lor x_{10}$)

Unsatisfiable core

Definition

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable subset of the original set of clauses.

STUVISM Erika Ábrahám - 25 / 105

Unsatisfiable core

Definition

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable subset of the original set of clauses.

■ The set of all original clauses is an unsatisfiable core.

Unsatisfiable core

Definition

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable subset of the original set of clauses.

- The set of all original clauses is an unsatisfiable core.
- The set of those original clauses that were used for resolution in conflict analysis during SAT-solving (inclusively the last conflict at decision level 0) gives us an unsatisfiable core which is in general much smaller.

Unsatisfiable core

Definition

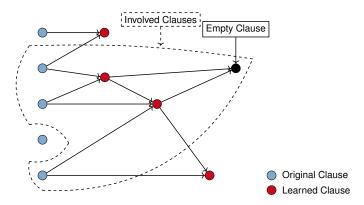
An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable subset of the original set of clauses.

- The set of all original clauses is an unsatisfiable core.
- The set of those original clauses that were used for resolution in conflict analysis during SAT-solving (inclusively the last conflict at decision level 0) gives us an unsatisfiable core which is in general much smaller.
- However, this unsatifiable core is still not always minimal (i.e., we can remove clauses from it still having an unsatisfiable core).

Erika Ábrahám - 25 / 105

The resolution graph

A resolution graph gives us more information to get a minimal unsatisfiable core.



Erika Ábrahám - 26 / 105

Termination

Theorem

It is never the case that the solver enters decision level dl again with the same partial assignment.

Erika Ábrahám - 27 / 105

Termination

Theorem

It is never the case that the solver enters decision level dl again with the same partial assignment.

Proof.

Define a partial order on partial assignments: $\alpha < \beta$ iff either α is an extension of β or α has more assignments at the smallest decision level at that α and β do not agree.

BCP decreases the order, conflict-driven backtracking also. Since the order always decreases during the search, the theorem holds.

Wilson Erika Ábrahám - 27 / 105

Decision heuristics: VSIDS

- VSIDS (variable state independent decaying sum)
- Gives priority to variables involved in recent conflicts.
- "Involved" can have different definitions. We take those variables that occur in clauses used for conflict resolution.

28 / 105

Decision heuristics: VSIDS

- VSIDS (variable state independent decaying sum)
- Gives priority to variables involved in recent conflicts.
- "Involved" can have different definitions. We take those variables that occur in clauses used for conflict resolution.
- 1 Each variable has a counter initialized to 0.
- 2 We define an increment value (e.g., 1).
- When a conflict occurs, we increase the counter of each variable, that occurs in at least one clause used for conflict resolution, by the increment value.
 - Afterwards we increase the increment value (e.g., by 1).
- 4 For decisions, the unassigned variable with the highest counter is chosen.
- 5 Periodically, all the counters and the increment value are divided by a constant.

Erika Ábrahám - 28 / 105

Decision heuristics: VSIDS

VSIDS is a 'quasi-static' strategy:

- static because it doesn't depend on current assignment
- dynamic because it gradually changes. Variables that appear in recent conflicts have higher priority.

This strategy is a conflict-driven decision strategy.

"...employing this strategy dramatically (i.e., an order of magnitude) improved performance..."

Erika Ábrahám - 29 / 105

Contents

- SAT solving
 - Propositional logic
 - DPLL+CDCL SAT solving
 - Propositional encoding examples
 - Hands-on
- SMT solving
 - Approaches
 - SMT-RAT
 - SMT-LIB
 - SMT solvers as integrated engines
 - Future challenges
 - Hands-on

30 / 105 Erika Ábrahám - 30 / 105

Example 1: Seminar topic assignment

- n participants
- n topics
- Set of preferences $E \subseteq \{1, ..., n\} \times \{1, ..., n\}$ $(p, t) \in E$ means: participant p would take topic t

Brika Ábrahám - 31 / 105

Example 1: Seminar topic assignment

- n participants
- n topics
- Set of preferences $E \subseteq \{1, ..., n\} \times \{1, ..., n\}$ $(p, t) \in E$ means: participant p would take topic t

Q: Can we assign to each participant a topic which he/she is willing to take?

Trika Ábrahám - 31 / 105

Notation:

32 / 105 Erika Ábrahám - 32 / 105

■ Notation: $x_{p,t}$ = "participant p is assigned topic t"

- Notation: $x_{p,t}$ = "participant p is assigned topic t"
- Constraints:

32 / 105 Erika Ábrahám - 32 / 105

- Notation: $x_{p,t}$ = "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

32 / 105 Erika Ábrahám - 32 / 105

- Notation: $x_{p,t}$ = "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

$$\bigwedge_{p=1}^{n} \left(\bigvee_{t=1}^{n} x_{p,t} \right)$$

- Notation: $x_{p,t}$ = "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

$$\bigwedge_{p=1}^{n} \left(\bigvee_{t=1}^{n} x_{p,t} \right)$$

Each participant is assigned at most one topic:

- Notation: $x_{p,t}$ = "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

$$\bigwedge_{p=1}^{n} \left(\bigvee_{t=1}^{n} x_{p,t} \right)$$

Each participant is assigned at most one topic:

$$\bigwedge_{p=1}^{n} \bigwedge_{t_1=1}^{n-1} \bigwedge_{t_2=t_1+1}^{n} \left(\neg x_{p,t_1} \lor \neg x_{p,t_2} \right)$$

Strika Ábrahám - 32 / 105

- Notation: $x_{p,t}$ = "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

$$\bigwedge_{p=1}^{n} \left(\bigvee_{t=1}^{n} x_{p,t} \right)$$

Each participant is assigned at most one topic:

$$\bigwedge_{p=1}^{n} \bigwedge_{t_1=1}^{n-1} \bigwedge_{t_2=t_1+1}^{n} \left(\neg x_{p,t_1} \lor \neg x_{p,t_2} \right)$$

Each participant is willing to take his/her assigned topic:

Erika Ábrahám -32 / 105

- Notation: $x_{p,t}$ = "participant p is assigned topic t"
- Constraints:

Each participant is assigned at least one topic:

$$\bigwedge_{p=1}^{n} \left(\bigvee_{t=1}^{n} x_{p,t} \right)$$

Each participant is assigned at most one topic:

$$\bigwedge_{p=1}^{n} \bigwedge_{t_1=1}^{n-1} \bigwedge_{t_2=t_1+1}^{n} \left(\neg x_{p,t_1} \lor \neg x_{p,t_2} \right)$$

Each participant is willing to take his/her assigned topic:

$$\bigwedge_{p=1}^{n} \bigwedge_{(p,t) \notin E} \neg x_{p,t}$$

33 / 105 Erika Ábrahám - 33 / 105

Each topic is assigned to at most one participant:

33 / 105

Each topic is assigned to at most one participant:

$$\bigwedge_{t=1}^{n} \bigwedge_{p_1=1}^{n} \bigwedge_{p_2=p_1+1}^{n} \left(\neg x_{p_1,t} \lor \neg x_{p_2,t} \right)$$

Erika Ábrahám -33 / 105

Example 2: Placement of wedding guests

- Three chairs in a row: 1, 2, 3
- We need to place Aunt, Sister and Father.
- Constraints:
 - Aunt doesn't want to sit near Father
 - Aunt doesn't want to sit in the left chair
 - Sister doesn't want to sit to the right of Father

34 / 105 Erika Ábrahám - 34 / 105

Example 2: Placement of wedding guests

- Three chairs in a row: 1, 2, 3
- We need to place Aunt, Sister and Father.
- Constraints:
 - Aunt doesn't want to sit near Father
 - Aunt doesn't want to sit in the left chair
 - Sister doesn't want to sit to the right of Father

Q: Can we satisfy these constraints?

34 / 105 Erika Ábrahám -

35 / 105 Erika Ábrahám - 35 / 105

■ Notation:

35 / 105 Erika Ábrahám - 35 / 105

Notation: Aunt = 1, Sister = 2, Father = 3 Left chair = 1, Middle chair = 2, Right chair = 3 Introduce a propositional variable for each pair (person, chair): $x_{p,c}$ = "person p is sited in chair c" for $1 \le p, c \le 3$

- Notation: Aunt = 1, Sister = 2, Father = 3 Left chair = 1, Middle chair = 2, Right chair = 3 Introduce a propositional variable for each pair (person, chair): $x_{p,c}$ = "person p is sited in chair c" for $1 \le p,c \le 3$
- Constraints:

35 / 105 Erika Ábrahám - 35 / 105

Notation: Aunt = 1, Sister = 2, Father = 3 Left chair = 1, Middle chair = 2, Right chair = 3 Introduce a propositional variable for each pair (person, chair): $x_{p,c}$ = "person p is sited in chair c" for $1 \le p, c \le 3$

Constraints:

Aunt doesn't want to sit near Father:

Strika Ábrahám - 35 / 105

Notation: Aunt = 1, Sister = 2, Father = 3 Left chair = 1, Middle chair = 2, Right chair = 3 Introduce a propositional variable for each pair (person, chair): $x_{p,c}$ = "person p is sited in chair c" for $1 \le p,c \le 3$

Constraints:

Aunt doesn't want to sit near Father:

$$((x_{1,1} \lor x_{1,3}) \to \neg x_{3,2}) \land (x_{1,2} \to (\neg x_{3,1} \land \neg x_{3,3}))$$

Erika Ábrahám - 35 / 105

Notation: Aunt = 1, Sister = 2, Father = 3 Left chair = 1, Middle chair = 2, Right chair = 3 Introduce a propositional variable for each pair (person, chair): $x_{p,c}$ = "person p is sited in chair c" for $1 \le p, c \le 3$

Constraints:

Aunt doesn't want to sit near Father:

$$((x_{1,1} \lor x_{1,3}) \to \neg x_{3,2}) \land (x_{1,2} \to (\neg x_{3,1} \land \neg x_{3,3}))$$

Aunt doesn't want to sit in the left chair:

Crika Ábrahám - 35 / 105

Notation: Aunt = 1, Sister = 2, Father = 3 Left chair = 1, Middle chair = 2, Right chair = 3 Introduce a propositional variable for each pair (person, chair): $x_{p,c}$ = "person p is sited in chair c" for $1 \le p, c \le 3$

Constraints:

Aunt doesn't want to sit near Father:

$$((x_{1,1} \lor x_{1,3}) \to \neg x_{3,2}) \land (x_{1,2} \to (\neg x_{3,1} \land \neg x_{3,3}))$$

Aunt doesn't want to sit in the left chair:

$$\neg x_{1,1}$$

Notation: Aunt = 1, Sister = 2, Father = 3 Left chair = 1, Middle chair = 2, Right chair = 3 Introduce a propositional variable for each pair (person, chair): $x_{p,c}$ = "person p is sited in chair c" for $1 \le p,c \le 3$

Constraints:

Aunt doesn't want to sit near Father:

$$((x_{1,1} \lor x_{1,3}) \to \neg x_{3,2}) \land (x_{1,2} \to (\neg x_{3,1} \land \neg x_{3,3}))$$

Aunt doesn't want to sit in the left chair:

$$\neg x_{1,1}$$

Sister doesn't want to sit to the right of Father:

Crika Ábrahám - 35 / 105

Notation: Aunt = 1, Sister = 2, Father = 3 Left chair = 1, Middle chair = 2, Right chair = 3 Introduce a propositional variable for each pair (person, chair): $x_{p,c}$ = "person p is sited in chair c" for $1 \le p, c \le 3$

Constraints:

Aunt doesn't want to sit near Father:

$$((x_{1,1} \lor x_{1,3}) \to \neg x_{3,2}) \land (x_{1,2} \to (\neg x_{3,1} \land \neg x_{3,3}))$$

Aunt doesn't want to sit in the left chair:

$$\neg x_{1,1}$$

Sister doesn't want to sit to the right of Father:

$$(x_{3,1} \to \neg x_{2,2}) \land (x_{3,2} \to \neg x_{2,3})$$

Erika Ábrahám -

36 / 105 Erika Ábrahám - 36 / 105

Each person is placed:

Each person is placed:

$$(x_{1,1} \lor x_{1,2} \lor x_{1,3}) \land (x_{2,1} \lor x_{2,2} \lor x_{2,3}) \land (x_{3,1} \lor x_{3,2} \lor x_{3,3})$$

$$\bigwedge_{p=1}^{3} \bigvee_{c=1}^{3} x_{p,c}$$

Erika Ábrahám -36 / 105

Each person is placed:

$$(x_{1,1} \lor x_{1,2} \lor x_{1,3}) \land (x_{2,1} \lor x_{2,2} \lor x_{2,3}) \land (x_{3,1} \lor x_{3,2} \lor x_{3,3})$$

$$\bigwedge_{p=1}^{3} \bigvee_{c=1}^{3} x_{p,c}$$

At most one person per chair:

Strika Ábrahám - 36 / 105

Each person is placed:

$$(x_{1,1} \lor x_{1,2} \lor x_{1,3}) \land (x_{2,1} \lor x_{2,2} \lor x_{2,3}) \land (x_{3,1} \lor x_{3,2} \lor x_{3,3})$$

$$\bigwedge_{p=1}^{3} \bigvee_{c=1}^{3} x_{p,c}$$

At most one person per chair:

$$\bigwedge_{p_{1}=1}^{3} \bigwedge_{p_{2}=p_{1}+1}^{3} \bigwedge_{c=1}^{3} (\neg x_{p_{1},c} \lor \neg x_{p_{2},c})$$

Erika Ábrahám - 36 / 105

Example 3: Assignment of frequencies

- n radio stations
- For each station assign one of k transmission frequencies, k < n.
- E set of pairs of stations, that are too close to have the same frequency.

Brika Ábrahám - 37 / 105

Example 3: Assignment of frequencies

- n radio stations
- For each station assign one of k transmission frequencies, k < n.
- E set of pairs of stations, that are too close to have the same frequency.
- Q: Can we assign to each station one frequency, such that no station pairs from *E* have the same frequency?

Frika Ábrahám - 37 / 105

■ Notation:

38 / 105 Erika Ábrahám - 38 / 105

■ Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

38 / 105 Erika Ábrahám - 38 / 105

■ Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

Constraints:

38 / 105 Erika Ábrahám - 38 / 105

Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

Constraints:

Every station is assigned at least one frequency:

STUMBER Erika Ábrahám - 38 / 105

Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

■ Constraints:

Every station is assigned at least one frequency:

$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{s,f} \right)$$

Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

■ Constraints:

Every station is assigned at least one frequency:

$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{s,f} \right)$$

Every station is assigned at most one frequency:

Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

Constraints:

Every station is assigned at least one frequency:

$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{s,f} \right)$$

Every station is assigned at most one frequency:

$$\bigwedge_{s=1}^{n} \bigwedge_{f1=1}^{k-1} \bigwedge_{f2=f1+1}^{k} \left(\neg x_{s,f1} \vee \neg x_{s,f2} \right)$$

STUDIES Erika Ábrahám - 38 / 105

Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

■ Constraints:

Every station is assigned at least one frequency:

$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{s,f} \right)$$

Every station is assigned at most one frequency:

$$\bigwedge_{s=1}^{n} \bigwedge_{f=1}^{k-1} \bigwedge_{f=f+1}^{k} \left(\neg x_{s,f1} \lor \neg x_{s,f2} \right)$$

38 / 105

Close stations are not assigned the same frequency:

Notation:

 $x_{s,f}$ = "station s is assigned frequency f" for $1 \le s \le n$, $1 \le f \le k$

■ Constraints:

Every station is assigned at least one frequency:

$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{s,f} \right)$$

Every station is assigned at most one frequency:

$$\bigwedge_{s=1}^{n} \bigwedge_{f=1}^{k-1} \bigwedge_{f=f+1}^{k} \left(\neg x_{s,f1} \lor \neg x_{s,f2} \right)$$

Close stations are not assigned the same frequency: For each $(s1, s2) \in E$,

$$\bigwedge_{f=1}^{k} \left(\neg x_{s1,f} \lor \neg x_{s2,f} \right)$$

Contents

- SAT solving
 - Propositional logic
 - DPLL+CDCL SAT solving
 - Propositional encoding examples
 - Hands-on
- SMT solving
 - Approaches
 - SMT-RAT
 - SMT-LIB
 - SMT solvers as integrated engines
 - Future challenges
 - Hands-on

Strika Ábrahám - 39 / 105

You need to have installed...

- Python
- Z3

https://github.com/exercism/z3/blob/main/docs/INSTALLATION.md

Hika Ábrahám - 40 / 105

SAT encodings

Suppose we can solve the satisfiability problem... how can this help us?

41 / 105 Erika Ábrahám - 41 / 105

SAT encodings

- Suppose we can solve the satisfiability problem... how can this help us?
- There are numerous problems in the industry that are solved via the satisfiability problem of propositional logic
 - Logistics
 - Planning
 - Electronic Design Automation industry
 - Cryptography
 - **...**

Erika Ábrahám - 41 / 105

DIMACS input syntax for SAT solvers

The DIMACS format for SAT solvers has three types of lines:

- header: "p cnf n m" in which
 - n denotes the highest variable index and
 - m the number of clauses.
- clauses: a sequence of integers ending with "0"
- comments: any line starting with "c "

Example:

		c example		
		c example p cnf 2 4		
$(a \lor b)$	\wedge	1	2	0
$(\neg a \lor b)$	\wedge	-1	2	0
$(a \lor \neg b)$	\wedge	1	-2	0
$(\neg a \lor \neg b)$	\wedge	-1	-2	0

Example 2 (wedding): DIMACS format

Notation: Aunt = 1, Sister = 2, Father = 3Left chair = 1, Middle chair = 2, Right chair = 3 $x_{p,c}$ = "person p is sited in chair c" for $1 \le p,c \le 3$

Constraints:

(1)
$$((x_{1,1} \lor x_{1,3}) \to \neg x_{3,2}) \land (x_{1,2} \to (\neg x_{3,1} \land \neg x_{3,3}))$$
 (2) $\neg x_{1,1}$
(3) $(x_{3,1} \to \neg x_{2,2}) \land (x_{3,2} \to \neg x_{2,3})$ (4) $\bigwedge_{p=1}^{3} \bigvee_{c=1}^{3} x_{p,c}$
(5) $\bigwedge_{p_1=1}^{3} \bigwedge_{p_2=p_1+1}^{3} \bigwedge_{c=1}^{3} (\neg x_{p_1,c} \lor \neg x_{p_2,c})$

c example p cnf 2 4 1 2 0 $(a \lor b) \land$

Erika Ábrahám -43 / 105

Example 3 (frequencies): DIMACS format

- $\begin{array}{ll} (1) & \bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{sf}\right) \\ (2) & \bigwedge_{s=1}^{n} \bigwedge_{f_{1}=1}^{k-1} \bigwedge_{f_{2}=f_{1}+1}^{k} \left(\neg x_{s,f_{1}} \vee \neg x_{s,f_{2}}\right) \\ (3) & \forall (s_{1},s_{2}) \in E. \ \bigwedge_{f=1}^{k} \left(\neg x_{s_{1},f} \vee \neg x_{s_{2},f}\right) \end{array}$

Example 3 (frequencies): DIMACS format

(1)
$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{sf}\right)$$

(2) $\bigwedge_{s=1}^{n} \bigwedge_{f_{1}=1}^{k-1} \bigwedge_{f_{2}=f_{1}+1}^{k} \left(\neg x_{s,f_{1}} \lor \neg x_{s,f_{2}}\right)$
(3) $\forall (s_{1}, s_{2}) \in E. \bigwedge_{f=1}^{k} \left(\neg x_{s_{1},f} \lor \neg x_{s_{2},f}\right)$

Assume that n^2 ($n \in \mathbb{N}_{>0}$) stations are arranged in a grid with the coordinates $(i, j), 1 \le i, j \le n$, and

$$E = \{((i,j), (i+1,j)) \mid 1 \le i \le n-1 \land 1 \le j \le n\} \cup \{((i,j), (i,j+1)) \mid 1 \le i \le n \land 1 \le j \le n-1\}.$$

Erika Ábrahám -44 / 105

Example 3 (frequencies): DIMACS format

(1)
$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{sf}\right)$$

(2) $\bigwedge_{s=1}^{n} \bigwedge_{f_{1}=1}^{k-1} \bigwedge_{f_{2}=f_{1}+1}^{k} \left(\neg x_{s,f_{1}} \lor \neg x_{s,f_{2}}\right)$
(3) $\forall (s_{1}, s_{2}) \in E. \bigwedge_{f=1}^{k} \left(\neg x_{s_{1},f} \lor \neg x_{s_{2},f}\right)$

Assume that n^2 ($n \in \mathbb{N}_{>0}$) stations are arranged in a grid with the coordinates (i,j), $1 \le i,j \le n$, and

$$E = \{((i,j), (i+1,j)) \mid 1 \le i \le n-1 \land 1 \le j \le n\} \cup \{((i,j), (i,j+1)) \mid 1 \le i \le n \land 1 \le j \le n-1\}.$$

Write a Python program that writes for an input n the **DIMACS** encoding for k = 1, ..., n into an external file, and check them (by manually calling z3 on them) to identify the minimal k necessary for a solution.

William Erika Ábrahám - 44 / 105

Example 3: DIMACS

```
import argparse
import svs
trv:
    parser = argparse.ArgumentParser()
    parser.add_argument("n", help="number of stations", type=int)
     args = parser.parse args()
    n = args.n
except:
   e = svs.exc info()[0]
   print(e)
for k in range(n):
    names = []
     for i in range(n):
          names i = \lceil 1 \rceil
          for i in range(k+1):
               name = str(i*(k+1)+j+1)
               names_i.append(name)
          names.append(names i)
     clauses = ""
     counter = 0
     for i in range(n):
          for j in range(k+1):
               clauses += names[i][i] + " "
          clauses += "0\n"
          counter += 1
     file = open("frequencies" + str(k+1) + ".dimacs", "w")
     file.write("p cnf " + str(n*(k+1)) + " " + str(counter) + "\n")
     file.write(clauses)
     file.close()
```

Erika Ábrahám - 45 / 105

Solving propositional logic with SMT solvers

- SMT-LIB format: https://microsoft.github.io/z3guide/docs/logic/propositional-logic
- Python interface: https://ericpony.github.io/z3py-tutorial/guide-examples.htm
- Both: https://cvc5.github.io/tutorials/beginners/

Erika Ábrahám - 46 / 105

SMT-LIB2 format

Boolean SMT-LIB example

```
(set-logic QF_UF)
(declare-const p Bool)
(assert (and p (not p)))
(check-sat)
```

47 / 105 Erika Ábrahám - 47 / 105

Example 3 (frequencies): SMT-LIB format

(1)
$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{sf}\right)$$

(2) $\bigwedge_{s=1}^{n} \bigwedge_{f_{1}=1}^{k-1} \bigwedge_{f_{2}=f_{1}+1}^{k} \left(\neg x_{s,f_{1}} \lor \neg x_{s,f_{2}}\right)$
(3) $\forall (s_{1}, s_{2}) \in E. \bigwedge_{f=1}^{k} \left(\neg x_{s_{1},f} \lor \neg x_{s_{2},f}\right)$

Assume that n^2 ($n \in \mathbb{N}_{>0}$) stations are arranged in a grid with the coordinates $(i, j), 1 \le i, j \le n$, and

$$E = \{((i,j), (i+1,j)) \mid 1 \le i \le n-1 \land 1 \le j \le n\} \cup \{((i,j), (i,j+1)) \mid 1 \le i \le n \land 1 \le j \le n-1\}.$$

Erika Ábrahám -48 / 105

Example 3 (frequencies): SMT-LIB format

(1)
$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{sf}\right)$$

(2) $\bigwedge_{s=1}^{n} \bigwedge_{f_{1}=1}^{k-1} \bigwedge_{f_{2}=f_{1}+1}^{k} \left(\neg x_{s,f_{1}} \lor \neg x_{s,f_{2}}\right)$
(3) $\forall (s_{1}, s_{2}) \in E. \bigwedge_{f=1}^{k} \left(\neg x_{s_{1},f} \lor \neg x_{s_{2},f}\right)$

Assume that n^2 ($n \in \mathbb{N}_{>0}$) stations are arranged in a grid with the coordinates (i,j), $1 \le i,j \le n$, and

$$E = \{((i,j), (i+1,j)) \mid 1 \le i \le n-1 \land 1 \le j \le n\} \cup \{((i,j), (i,j+1)) \mid 1 \le i \le n \land 1 \le j \le n-1\}.$$

Write a Python program that writes for an input n the **SMT-LIB2** encoding for k = 1, ..., n into an external file, and check them (by manually calling z3 on them) to identify the minimal k necessary for a solution.

Erika Ábrahám - 48 / 105

Example 3: SMT-LIB2

```
import argparse
import sys
try:
     parser = argparse.ArgumentParser()
    parser.add_argument("n", help="number of stations", type=int)
     args = parser.parse_args()
    n = args.n
except:
   e = sys.exc_info()[0]
   print(e)
names = []
for i in range(n):
   names i = []
   for i in range(n):
        name = a_+ + str(i+1) + _- + str(i+1);
        names_i.append(name)
   names.append(names i)
for k in range(n):
   file = open("frequencies" + str(k+1) + ".smt2", "w")
   file.write("(set-logic QF_UF)\n")
   for i in range(n):
        for j in range(k+1):
            file.write("(declare-const " + names[i][j] + " Bool)\n")
    for i in range(n):
        file.write("(assert (or")
        for j in range(k+1):
            file.write(" " + names[i][i])
        file.write("))\n")
    file.write("(check-sat)\n")
    file.write("(exit)\n")
   file.close()
```

Solving propositional logic with SMT solvers

- SMT-LIB format: https://microsoft.github.io/z3guide/docs/logic/propositional-logic
- Python interface: https://ericpony.github.io/z3py-tutorial/guide-examples.htm
- Both: https://cvc5.github.io/tutorials/beginners/

50 / 105

Example 3: Python API

(1)
$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{sf}\right)$$

(2) $\bigwedge_{s=1}^{n} \bigwedge_{f_{1}=1}^{k-1} \bigwedge_{f_{2}=f_{1}+1}^{k} \left(\neg x_{s,f_{1}} \lor \neg x_{s,f_{2}}\right)$
(3) $\forall (s_{1}, s_{2}) \in E. \bigwedge_{f=1}^{k} \left(\neg x_{s_{1},f} \lor \neg x_{s_{2},f}\right)$

Assume that n^2 ($n \in \mathbb{N}_{>0}$) stations are arranged in a grid with the coordinates (i,j), $1 \le i,j \le n$, and

$$\begin{split} E &= & \{ ((i,j), (i+1,j)) \mid 1 \leq i \leq n-1 \, \land \, 1 \leq j \leq n \} \, \cup \\ & \{ ((i,j), (i,j+1)) \mid 1 \leq i \leq n \, \land \, 1 \leq j \leq n-1 \} \, . \end{split}$$

Tilla Ábrahám - 51 / 105

Example 3: Python API

(1)
$$\bigwedge_{s=1}^{n} \left(\bigvee_{f=1}^{k} x_{sf}\right)$$

(2) $\bigwedge_{s=1}^{n} \bigwedge_{f_{1}=1}^{k-1} \bigwedge_{f_{2}=f_{1}+1}^{k} \left(\neg x_{s,f_{1}} \lor \neg x_{s,f_{2}}\right)$
(3) $\forall (s_{1}, s_{2}) \in E. \bigwedge_{f=1}^{k} \left(\neg x_{s_{1},f} \lor \neg x_{s_{2},f}\right)$

Assume that n^2 ($n \in \mathbb{N}_{>0}$) stations are arranged in a grid with the coordinates (i,j), $1 \le i,j \le n$, and

$$E = \{((i,j), (i+1,j)) \mid 1 \le i \le n-1 \land 1 \le j \le n\} \cup \{((i,j), (i,j+1)) \mid 1 \le i \le n \land 1 \le j \le n-1\}.$$

Write a Python program that uses for an input n the **Python API** of z3 to find the minimal k necessary for a solution.

Erika Ábrahám - 51 / 105

Example 3: Python API

```
from z3 import *
import argparse
import sys
try:
    parser = argparse.ArgumentParser()
    parser.add argument("n". help="number of stations". type=int)
     args = parser.parse_args()
    n = args.n
except:
   e = svs.exc info()[0]
   print(e)
names = []
for i in range(n):
   names_i = []
   for i in range(n):
        name = a_+ + str(i+1) + _+ + str(i+1);
        names_i.append(Bool(name))
   names.append(names i)
s = Solver()
for k in range(n):
    s.push()
   for i in range(n):
        params = []
        for j in range(k+1):
            params.append(names[i][j])
        s.add(Or(params))
   print(s)
   print(s.check())
   s.pop()
```

Contents

- SAT solving
 - Propositional logic
 - DPLL+CDCL SAT solving
 - Propositional encoding examples
 - Hands-on
- SMT solving
 - Approaches
 - SMT-RAT
 - SMT-LIB
 - SMT solvers as integrated engines
 - Future challenges
 - Hands-on

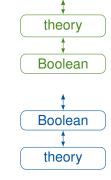
53 / 105 Erika Ábrahám - 53 / 105

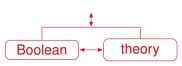
Three SMT solving approaches

Eager SMT solving

Lazy SMT solving

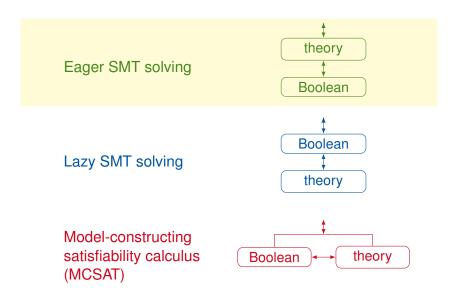
Model-constructing satisfiability calculus (MCSAT)





54 / 105

Three SMT solving approaches



S5 / 105 Erika Ábrahám -

Eager example [Bryant and Velev, 2000]

$$\varphi^E = x_1 = x_2 \land x_2 = x_3 \land x_1 \neq x_3$$

Eager example [Bryant and Velev, 2000]

$$\varphi^E = x_1 = x_2 \land x_2 = x_3 \land x_1 \neq x_3$$

$$\varphi^{prop}$$
 :=

 φ^E is satisfiable iff φ^{prop} is satisfiable

Erika Ábrahám -56 / 105

Eager example [Bryant and Veley, 2000]

$$\varphi^E = x_1 = x_2 \land x_2 = x_3 \land x_1 \neq x_3$$

$$\varphi^E$$
 is satisfiable iff φ^{prop} is satisfiable

Erika Ábrahám -56 / 105

Eager example [Bryant and Veley, 2000]

$$\varphi^E = x_1 = x_2 \land x_2 = x_3 \land x_1 \neq x_3$$

$$\varphi^E$$
 is satisfiable iff φ^{prop} is satisfiable

Erika Ábrahám -56 / 105

Eager example [Bryant and Velev, 2000]

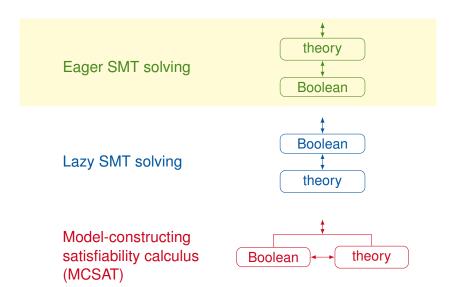
$$\varphi^E = x_1 = x_2 \land x_2 = x_3 \land x_1 \neq x_3$$

$$\varphi^E$$
 is satisfiable iff φ^{prop} is satisfiable

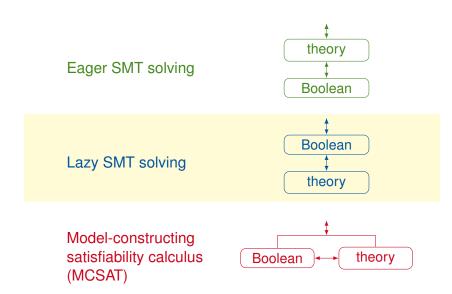
Similar approaches are available for uninterpreted functions, bit-vector arithmetic ("bit-blasting"), floating-point arithmetic and others.

Erika Ábrahám - 56 / 105

Three SMT solving approaches

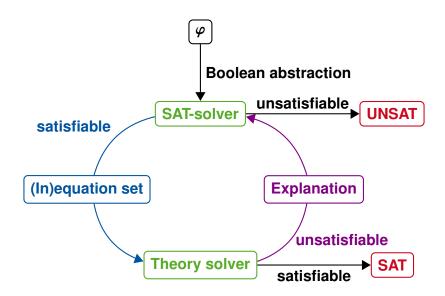


Three SMT solving approaches



Frika Ábrahám - 57 / 105

Full lazy SMT solving



Erika Ábrahám - 58 / 105

Boolean abstraction

$$\underbrace{(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0)}_{a_1} \land \underbrace{p_1 + p_2 + p_3 \ge 100}_{a_2} \land \underbrace{(p_1 \ge 5 \lor p_2 \ge 5)}_{a_6} \land \underbrace{p_3 \ge 10}_{a_7} \land \underbrace{p_1 + 2p_2 + 5p_3 \le 180}_{a_8} \land \underbrace{3p_1 + 2p_2 + p_3 \le 300}_{a_9}$$

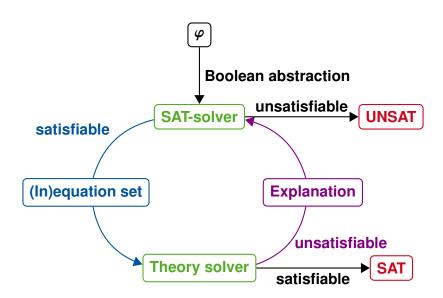
Boolean abstraction

$$\underbrace{(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0)}_{a_1} \land \underbrace{p_1 + p_2 + p_3 \ge 100}_{a_2} \land \underbrace{(p_1 \ge 5 \lor p_2 \ge 5)}_{a_6} \land \underbrace{p_3 \ge 10}_{a_7} \land \underbrace{p_1 + 2p_2 + 5p_3 \le 180}_{a_8} \land \underbrace{3p_1 + 2p_2 + p_3 \le 300}_{a_9}$$

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Erika Ábrahám -59 / 105

Full lazy SMT solving



$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

DL0:

Crika Ábrahám - 61 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1,\ldots,a_9

Assignment to decision variables: false

 $DL0: a_4: 1$

Erika Ábrahám -

61 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

$$DL0: a_4: 1, a_7: 1$$

Erika Ábrahám -

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

$$DL0: a_4: 1, a_7: 1, a_8: 1$$

Erika Ábrahám -

61 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$$

Erika Ábrahám - 61 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$ DL1:

Erika Ábrahám -

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

 $DL1:a_1:0$

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1
```

 $DL1:a_1:0$

DL2:

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

 $DL1: a_1: 0$ $DL2: a_2: 0$

STUMBEN Erika Ábrahám -

61 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

 $DL1:a_1:0$

 $DL2: a_2: 0, a_3: 1$

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1
DL1: a_1: 0
```

 $DL2: a_2: 0, a_3: 1$

DL3:

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

 $DL1:a_1:0$

 $DL2: a_2: 0, a_3: 1$

 $DL3: a_5: 0$

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

 $DL1:a_1:0$

 $DL2: a_2: 0, a_3: 1$

 $DL3: a_5: 0, a_6: 1$

Erika Ábrahám - 61 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9

Assignment to decision variables: false

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

 $DL1:a_1:0$

 $DL2: a_2: 0, a_3: 1$

 $DL3: a_5: 0, a_6: 1$

Solution found for the Boolean abstraction.

Full lazy SMT solving



William Erika Ábrahám - 62 / 105

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1 DL1: a_1: 0
```

 $DL2: a_2: 0, a_3: 1$ $DL3: a_5: 0, a_6: 1$

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1 DL1: a_1: 0 DL2: a_2: 0, a_3: 1 DL3: a_5: 0, a_6: 1
```

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_3 , a_6

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$ $DL1: a_1: 0$ $DL2: a_2: 0, a_3: 1$ $DL3: a_5: 0, a_6: 1$

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_3 , a_6

$$\underbrace{(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0)}_{a_1} \land \underbrace{p_1 + p_2 + p_3 \ge 100}_{a_2} \land \underbrace{(p_1 \ge 5 \lor p_2 \ge 5)}_{a_6} \land \underbrace{p_3 \ge 10}_{a_7} \land \underbrace{p_1 + 2p_2 + 5p_3 \le 180}_{a_8} \land \underbrace{3p_1 + 2p_2 + p_3 \le 300}_{a_0}$$

Gilde Abrahám - 63 / 105

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$ $DL1: a_1: 0$ $DL2: a_2: 0, a_3: 1$ $DL3: a_5: 0, a_6: 1$

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_3 , a_6

$$\underbrace{(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0)}_{a_1} \land \underbrace{p_1 + p_2 + p_3 \ge 100}_{a_4} \land \underbrace{(p_1 \ge 5 \lor p_2 \ge 5)}_{a_6} \land \underbrace{p_3 \ge 10}_{a_7} \land \underbrace{p_1 + 2p_2 + 5p_3 \le 180}_{a_8} \land \underbrace{3p_1 + 2p_2 + p_3 \le 300}_{a_9}$$

Encoding:

$$a_4: p_1 + p_2 + p_3 \ge 100$$
 $a_7: p_3 \ge 10$ $a_8: p_1 + 2p_2 + 5p_3 \le 180$ $a_9: 3p_1 + 2p_2 + p_3 \le 300$ $a_3: p_3 = 0$ $a_6: p_2 \ge 5$

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9: 3p_1 + 2p_2 + p_3 \le 300$$

$$a_3:p_3=0$$

$$a_6: p_2 \ge 5$$

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3\leq 300$$

$$a_3:p_3=0$$

$$a_6: p_2 \ge 5$$

No.

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3\leq 300$$

$$a_3:p_3=0$$

$$a_6: p_2 \ge 5$$

No.

Reason:

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3 \le 300$$

$$a_3:p_3=0$$

$$a_6: p_2 \ge 5$$

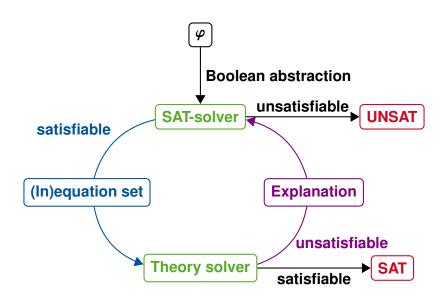
No.

Reason: $p_3 = 0 \land p_3 \ge 10$ are conflicting.

Crika Ábrahám -

64 / 105

Full lazy SMT solving



William Erika Ábrahám - 65 / 105

```
Add clause (\neg a_3 \lor \neg a_7).

(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)

DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1

DL1: a_1: 0

DL2: a_2: 0, a_3: 1

DL3: a_5: 0, a_6: 1
```

Erika Ábrahám - 66 / 105

Add clause $(\neg a_3 \lor \neg a_7)$.

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)$$

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

 $DL1:a_1:0$

 $DL2: a_2: 0, a_3: 1$

 $DL3: a_5: 0, a_6: 1$

Conflict resolution is simple, since the new clause is already an asserting one.

Erika Ábrahám - 66 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)$$

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

Erika Ábrahám - 67 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)$$

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$$

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)$$

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$$

$$DL1:$$

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)$$

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$ $DL1: a_1: 0$

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)$$

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$ $DL1: a_1: 0, a_2: 1$

```
(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0
DL1: a_1: 0, a_2: 1
DL2:
```

```
(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)
```

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0

DL1: a_1: 0, a_2: 1
```

 $DL2: a_5: 0$

```
(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0
DL1: a_1: 0, a_2: 1
DL2: a_5: 0, a_6: 1
```

Erika Ábrahám - 67 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)$$

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0

DL1: a_1: 0, a_2: 1

DL2: a_5: 0, a_6: 1
```

Solution found for the Boolean abstraction.

Erika Ábrahám - 67 / 105

Full lazy SMT solving



William Erika Ábrahám - 68 / 105

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0 DL1: a_1: 0, a_2: 1 DL2: a_5: 0, a_6: 1
```



```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0 DL1: a_1: 0, a_2: 1 DL2: a_5: 0, a_6: 1
```

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_2 , a_6

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$ $DL1: a_1: 0, a_2: 1$ $DL2: a_5: 0, a_6: 1$

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_2 , a_6

$$(p_{1} = 0 \lor p_{2} = 0 \lor p_{3} = 0) \land p_{1} + p_{2} + p_{3} \ge 100 \land (p_{1} \ge 5 \lor p_{2} \ge 5) \land p_{3} \ge 10 \land p_{1} + 2p_{2} + 5p_{3} \le 180 \land (p_{1} \ge 5) \land (p_{2} \ge 5) \land (p_{3} \ge 10) \land (p_{1} + 2p_{2} + p_{3} \le 300) \land (p_{3} \lor p_{3}) \land (p_{3} \lor p_{3} \lor p_{3})$$

Erika Ábrahám -69 / 105

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$ $DL1: a_1: 0, a_2: 1$ $DL2: a_5: 0, a_6: 1$

True theory constraints: $a_4, a_7, a_8, a_9, a_2, a_6$

$$\underbrace{(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0)}_{a_1} \land \underbrace{p_1 + p_2 + p_3 \ge 100}_{a_2} \land \underbrace{(p_1 \ge 5 \lor p_2 \ge 5)}_{a_6} \land \underbrace{p_3 \ge 10}_{a_7} \land \underbrace{p_1 + 2p_2 + 5p_3 \le 180}_{a_8} \land \underbrace{3p_1 + 2p_2 + p_3 \le 300}_{a_9} \land (\neg a_3 \lor \neg a_7)$$

Encoding:

$$a_4: p_1 + p_2 + p_3 \ge 100$$
 $a_7: p_3 \ge 10$ $a_8: p_1 + 2p_2 + 5p_3 \le 180$
 $a_9: 3p_1 + 2p_2 + p_3 \le 300$ $a_2: p_2 = 0$ $a_6: p_2 \ge 5$

William Erika Ábrahám - 69 / 105

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3\leq 300$$

$$a_2:p_2=0$$

$$a_6: p_2 \ge 5$$

Tilles Erika Ábrahám - 70 / 105

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3\leq 300$$

$$a_2:p_2=0$$

$$a_6: p_2 \ge 5$$

No.

Tilla Ábrahám - 70 / 105

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9: 3p_1 + 2p_2 + p_3 \le 300$$

$$a_2:p_2=0$$

$$a_6: p_2 \ge 5$$

No.

Reason:

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9: 3p_1 + 2p_2 + p_3 \le 300$$

$$a_2:p_2=0$$

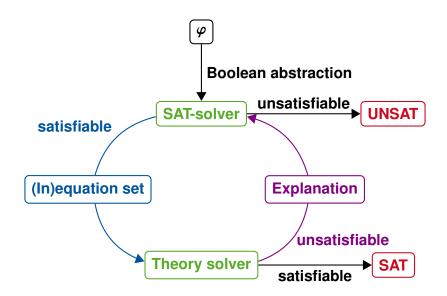
$$a_6: p_2 \ge 5$$

No.

Reason:
$$\underline{p_2 = 0} \land \underline{p_2 \ge 5}$$
 are conflicting.

Erika Ábrahám -

Full lazy SMT solving



Trika Ábrahám - 71 / 105

Add clause $(\neg a_2 \lor \neg a_6)$.

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0
```

 $DL1: a_1: 0, a_2: 1$ $DL2: a_5: 0, a_6: 1$

Add clause $(\neg a_2 \lor \neg a_6)$.

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$

 $DL1: a_1: 0, a_2: 1$ $DL2: a_5: 0, a_6: 1$

Conflict resolution is simple, since the new clause is already an asserting one.

Erika Ábrahám -72 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$ $DL1: a_1: 0, a_2: 1$

Erika Ábrahám -73 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$$

 $DL1: a_1: 0, a_2: 1, a_6: 0$

Erika Ábrahám -73 / 105

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$ $DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1$

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

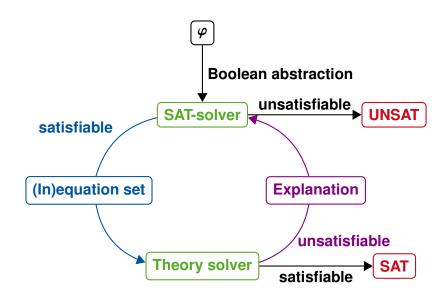
$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$$

 $DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1$

Solution found for the Boolean abstraction.

Trika Ábrahám - 73 / 105

Full lazy SMT solving



Tika Ábrahám - 74 / 105

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$ $DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1$

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$$
 $DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1$

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_2 , a_5

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$$
 $DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1$

True theory constraints: $a_4, a_7, a_8, a_9, a_2, a_5$

$$\underbrace{(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0)}_{a_1} \land \underbrace{p_1 + p_2 + p_3 \ge 100}_{a_2} \land \underbrace{(p_1 \ge 5 \lor p_2 \ge 5)}_{a_6} \land \underbrace{p_3 \ge 10}_{a_7} \land \underbrace{p_1 + 2p_2 + 5p_3 \le 180}_{a_8} \land \underbrace{3p_1 + 2p_2 + p_3 \le 300}_{a_9} \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

Erika Ábrahám -75 / 105

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$$
 $DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1$

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_2 , a_5

$$\underbrace{(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0)}_{a_1} \land \underbrace{p_1 + p_2 + p_3 \ge 100}_{a_4} \land \underbrace{(p_1 \ge 5 \lor p_2 \ge 5)}_{a_6} \land \underbrace{p_3 \ge 10}_{a_7} \land \underbrace{p_1 + 2p_2 + 5p_3 \le 180}_{a_8} \land \underbrace{3p_1 + 2p_2 + p_3 \le 300}_{a_9} \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

Encoding:

$$a_4: p_1 + p_2 + p_3 \ge 100$$
 $a_7: p_3 \ge 10$ $a_8: p_1 + 2p_2 + 5p_3 \le 180$ $a_9: 3p_1 + 2p_2 + p_3 \le 300$ $a_2: p_2 = 0$ $a_5: p_1 \ge 5$

Erika Ábrahám -75 / 105

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3 \le 300$$

$$a_2:p_2=0$$

$$a_5: p_1 \ge 5$$

Titulian Erika Ábrahám - 76 / 105

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3 \le 300$$

$$a_2:p_2=0$$

$$a_5: p_1 \ge 5$$

Yes.

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3 \le 300$$

$$a_2:p_2=0$$

$$a_5: p_1 \ge 5$$

Yes. E.g.,

Is the conjunction of the following constraints satisfiable?

$$a_4: p_1 + p_2 + p_3 \ge 100$$

$$a_7: p_3 \ge 10$$

$$a_8: p_1 + 2p_2 + 5p_3 \le 180$$

$$a_9:3p_1+2p_2+p_3 \le 300$$

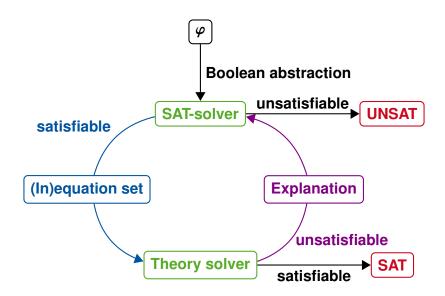
$$a_2:p_2=0$$

$$a_5: p_1 \ge 5$$

Yes. E.g., $p_1 = 90$, $p_2 = 0$, $p_3 = 10$ is a solution.

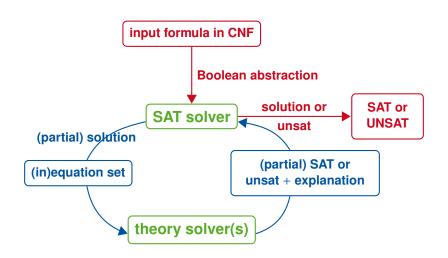
Erika Ábrahám -76 / 105

Full lazy SMT solving



Trika Ábrahám - 77 / 105

Less lazy SMT solving



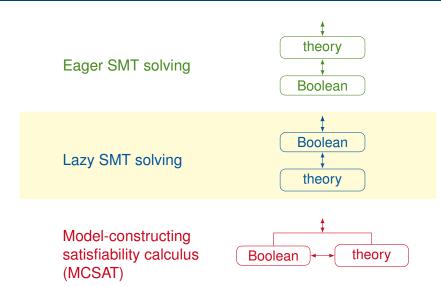
78 / 105 Erika Ábrahám -

Requirements on the theory solver

- Incrementality: In less lazy solving we extend the set of constraints. The solver should make use of the previous satisfiability check for the check of the extended set.
- (Preferably minimal) infeasible subsets: Compute a reason for unsatisfaction
- **Backtracking:** The theory solver should be able to remove constraints in inverse chronological order.

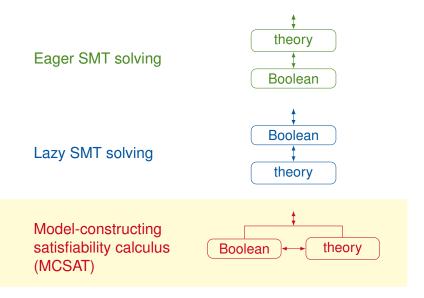
Frika Ábrahám - 79 / 105

Three SMT solving approaches



William Erika Ábrahám - 80 / 105

Three SMT solving approaches



80 / 105 Erika Ábrahám - 80 / 105

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

81/105 Erika Ábrahám - 81/105

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c)$$

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c)$$

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c)$$

 \mathbb{B} -decision a = false

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c)$$

B-propagate -

 \mathbb{B} -decision a = false

B-propagate -

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c)$$

B-propagate -

 \mathbb{B} -decision a = false

B-propagate -

 \mathbb{B} -decision b = false

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c)$$

B-propagate -

 \mathbb{B} -decision a = false

B-propagate -

 \mathbb{B} -decision b = false

 \mathbb{B} -propagate c = true

Exploration: B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c)$$

 \mathbb{B} -propagate -

 \mathbb{B} -decision a = false

B-propagate -

 \mathbb{B} -decision b = false

 \mathbb{B} -propagate c = true

 \mathbb{B} -conflict resolution $(a \lor b)$

Exploration: B-decision T-decision

Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c)$$

B-propagate -

 \mathbb{B} -decision a = false

B-propagate -

 \mathbb{B} -decision b = false

 \mathbb{B} -propagate c = true

 \mathbb{B} -conflict resolution $(a \lor b)$

Exploration: B-decision T-decision

Proof system: B-conflict resolution T-conflict resolution

 $\dots x \cdot y^2 < 0 \dots$

$$(a \lor b \lor c) \land (a \lor b \lor \neg c)$$

B-propagate -

 \mathbb{B} -decision a = false

B-propagate -

 \mathbb{B} -decision b = false

 \mathbb{B} -propagate c = true

 \mathbb{B} -conflict resolution $(a \lor b)$

Exploration: B-decision T-decision

Proof system: B-conflict resolution T-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c) \qquad \dots x \cdot y^2 < 0 \dots$$

 ${\mathbb B}$ -propagate - ${\mathbb B}$ -propagate

 \mathbb{B} -decision a = false

B-propagate -

 \mathbb{B} -decision b = false

 \mathbb{B} -propagate c = true

 \mathbb{B} -conflict resolution $(a \lor b)$

Exploration: \mathbb{B} -decision \mathbb{T} -decision

Proof system: B-conflict resolution T-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c) \qquad \dots x \cdot y^2 < 0 \dots$$

 \mathbb{B} -propagate - \mathbb{B} -propagate -

 \mathbb{B} -decision a = false \mathbb{B} -decision $x \cdot y^2 < 0$

 \mathbb{B} -decision b = false

 \mathbb{B} -propagate c = true

 \mathbb{B} -conflict resolution $(a \lor b)$

Exploration: B-decision T-decision

Proof system: B-conflict resolution T-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c) \qquad \dots x \cdot y^2 < 0 \dots$$

 ${\mathbb B}$ -propagate - ${\mathbb B}$ -propagate -

 \mathbb{B} -decision a = false \mathbb{B} -decision $x \cdot y^2 < 0$

 \mathbb{B} -propagate - \mathbb{T} -propagate $x \in (-\infty, \infty)$

 \mathbb{B} -decision b = false

 \mathbb{B} -propagate c = true

 \mathbb{B} -conflict resolution $(a \lor b)$

Exploration: B-decision T-decision

Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c) \qquad \dots x \cdot y^2 < 0 \dots$$

 \mathbb{B} -propagate - \mathbb{B} -propagate -

 \mathbb{B} -decision a = false \mathbb{B} -decision $x \cdot y^2 < 0$

 \mathbb{B} -propagate - \mathbb{T} -propagate $x \in (-\infty, \infty)$

 \mathbb{B} -decision b = false \mathbb{T} -decision x = 1

 \mathbb{B} -propagate c = true

 \mathbb{B} -conflict resolution $(a \lor b)$

Exploration: \mathbb{B} -decision \mathbb{T} -decision

Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c) \qquad \dots x \cdot y^2 < 0 \dots$$

B-propagate - B-propagate -

 \mathbb{B} -decision a = false \mathbb{B} -decision $x \cdot y^2 < 0$

 \mathbb{B} -propagate - \mathbb{T} -propagate $x \in (-\infty, \infty)$

 \mathbb{B} -decision b = false \mathbb{T} -decision x = 1

 \mathbb{B} -propagate c = true f \mathbb{T} -propagate $y \in \emptyset$ f

 \mathbb{B} -conflict resolution $(a \lor b)$

Exploration: B-decision T-decision

Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

$$(a \lor b \lor c) \land (a \lor b \lor \neg c) \qquad \dots x \cdot y^2 < 0 \dots$$

B-propagate - B-propagate -

 \mathbb{B} -decision a = false \mathbb{B} -decision $x \cdot y^2 < 0$

 \mathbb{B} -propagate - \mathbb{T} -propagate $x \in (-\infty, \infty)$

 \mathbb{B} -decision b = false \mathbb{T} -decision x = 1

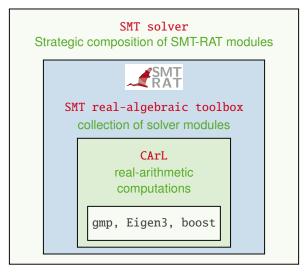
 \mathbb{B} -propagate c = true f \mathbb{T} -propagate $y \in \emptyset$ f

Contents

- SAT solving
 - Propositional logic
 - DPLL+CDCL SAT solving
 - Propositional encoding examples
 - Hands-on
- SMT solving
 - Approaches
 - SMT-RAT
 - SMT-LIB
 - SMT solvers as integrated engines
 - Future challenges
 - Hands-on

82 / 105 Erika Ábrahám - 82 / 105

Our SMT-RAT library [SAT'12, SAT'15]



- MIT licensed source code: github.com/smtrat/smtrat
- Documentation: smtrat.github.io

B3 / 105

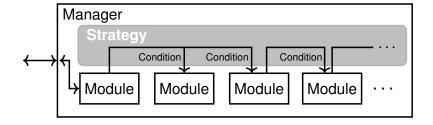
Solver modules in SMT-RAT [SAT'12, SAT'15]

CArL library: basic arithmetic datatypes and computations [Sapientia'18, NFM'11, CAl'11]

Basic modules SAT solver CNF converter Preprocessing/simplifying modules
Non-algebraic decision procedures
Equalities and uninterpreted functions Bit-vectors Bit-blasting
Interval constraint propagation Pseudo-Boolean formulas
Algebraic decision procedures Gauß+Fourier-Motzkin, FMplex [GandALF'23]
Gröbner bases [CAl'13] MCSAT (FM,VS,CAD) [2xSC ² '19] Simplex [ISSAC'21]
Cylindrical algebraic decomposition [SC ² '21, CADE-24, JSC'19, SC ² '17, 3 PhDs]
Cylindrical algebraic covering [SMT'23, JLAMP'21, SYNASC'21, PhD Kremer]
Virtual substitution [FCT'11, SC2'17, 1 PhD] Subtropical satisfiability [NFM'23]
Generalized branch-and-bound [CASC'16] Cube tests Linearization

Erika Ábrahám - 84 / 105

Strategic composition of solver modules in SMT-RAT



Erika Ábrahám - 85 / 105

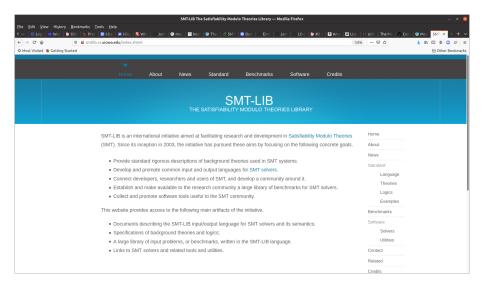
Contents

- SAT solving
 - Propositional logic
 - DPLL+CDCL SAT solving
 - Propositional encoding examples
 - Hands-on
- SMT solving
 - Approaches
 - SMT-RAT
 - SMT-LIB
 - SMT solvers as integrated engines
 - Future challenges
 - Hands-on

Erika Ábrahám -

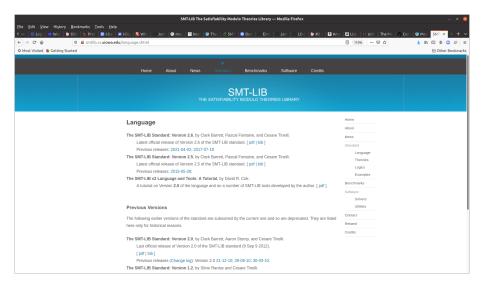
86 / 105

The Satisfiability Modulo Theories Library

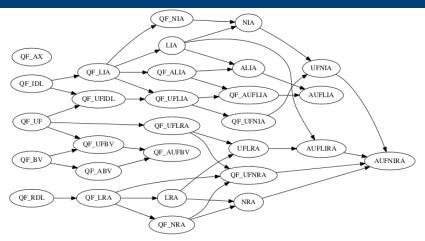


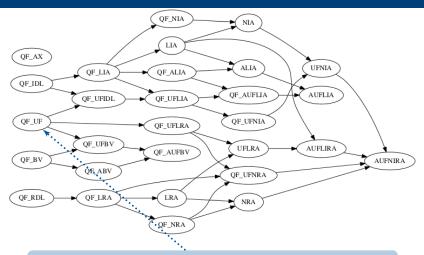
87 / 105 Erika Ábrahám - 87 / 105

The Satisfiability Modulo Theories Library

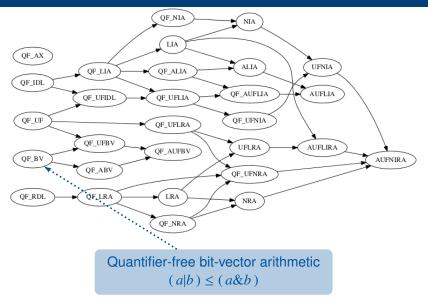


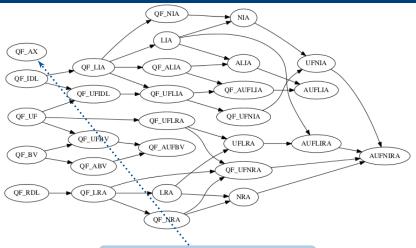
88 / 105 Erika Ábrahám - 88 / 105



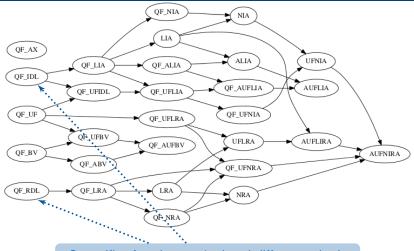


Quantifier-free equality logic with uninterpreted functions $(a = c \land b = d) \rightarrow f(a, b) = f(c, d)$



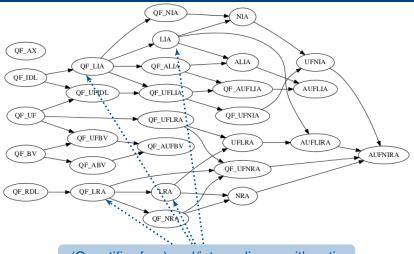


Quantifier-free array theory $i = j \rightarrow read(write(a, i, v), j) = v$

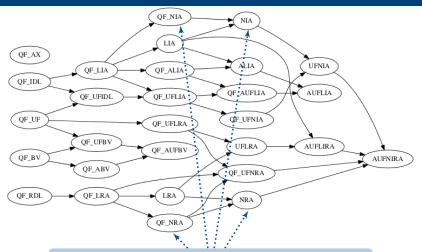


Quantifier-free integer/rational difference logic

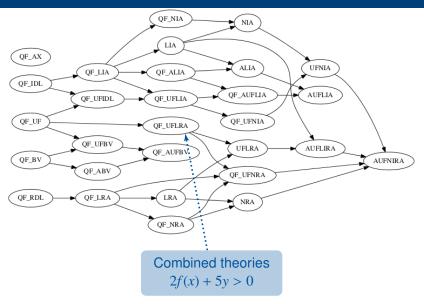
$$x - y \sim 0, \sim \in \{<, \le, =, \ge, >\}$$



(Quantifier-free) real/integer linear arithmetic 3x + 7y = 8



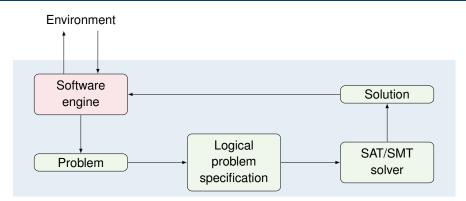
(Quantifier-free) real/integer non-linear arithmetic $x^2 + 2xy + y^2 \ge 0$

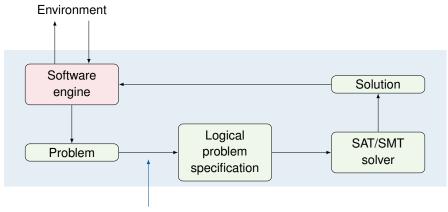


Contents

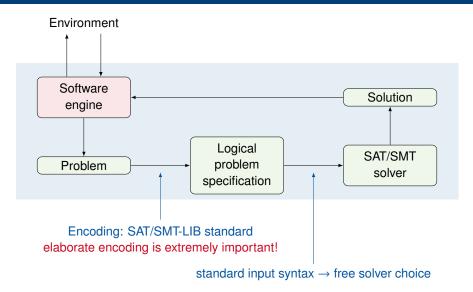
- SAT solving
 - Propositional logic
 - DPLL+CDCL SAT solving
 - Propositional encoding examples
 - Hands-on
- SMT solving
 - Approaches
 - SMT-RAT
 - SMT-LIB
 - SMT solvers as integrated engines
 - Future challenges
 - Hands-on

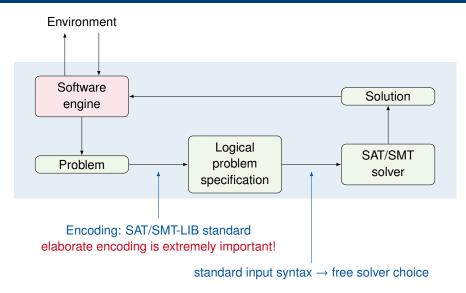
90 / 105 Erika Ábrahám - 90 / 105





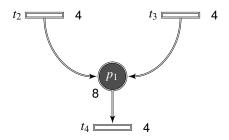
Encoding: SAT/SMT-LIB standard elaborate encoding is extremely important!

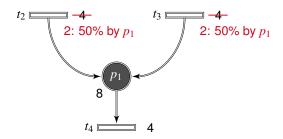


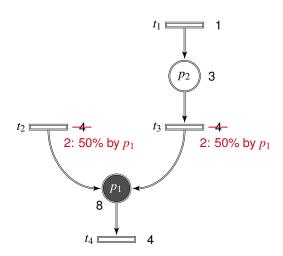


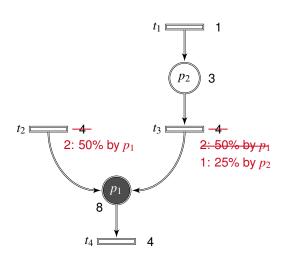
Next: some applications of SMT solvers

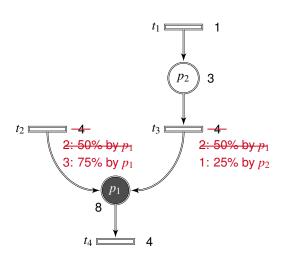
105 Prika Ábrahám - 91 / 105







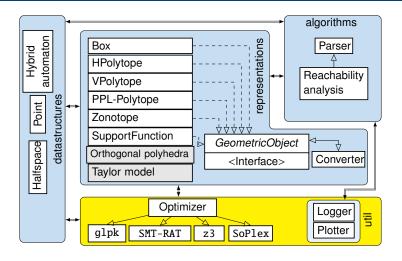




1. SMT encoding of rate adaption fixedpoint

```
(1) \left[ \bigwedge_{p \in P} 0 \le \text{factor}_p \le 1 \right] \land \left[ \bigwedge_{t \in T} 0 \le \text{factor}_t \le 1 \right] \land
(2) \quad \Big[ \bigwedge_{t \in T} ((\mathsf{owner}_t = source(t) \land \mathsf{owner}_t \in P_{empty}) \lor (\mathsf{owner}_t = target(t) \land \mathsf{owner}_t \in P_{full})) \Big] \land \\
(3) \left[ \bigwedge_{n \in P} \mathbf{in}_{p} = \left( \sum_{t \in In(p) \cap T_{a}} \mathbf{factor}_{t} \cdot nominal\_rate(t) \right) + \left( \sum_{t \in In(p) \cap T_{na}} nominal\_rate(t) \right) \wedge \right]
                     \mathbf{out}_p = (\sum_{t \in Out(p) \cap T_a} \mathbf{factor}_t \cdot nominal\_rate(t)) + (\sum_{t \in Out(p) \cap T_{na}} nominal\_rate(t)) \Big] \land
(4)  \left[ \bigwedge_{p \in P_{empty}} \left( (\mathbf{factor}_p = 1 \lor \bigvee_{t \in Out(p)} \mathbf{owner}_t = p) \land \right. \right.  \left( \bigwedge_{t \in Out(p)} (\mathbf{owner}_t = p \to \mathbf{factor}_t = \mathbf{factor}_p) \land \right. 
                                                  (owner_t \neq p \rightarrow factor_t < factor_p) )\land
                                in_p \ge out_p \land (factor_p < 1 \rightarrow in_p = out_p)
(5) \left[ \bigwedge_{p \in P_{fi,il}} \left( (\mathbf{factor}_p = 1 \lor \bigvee_{t \in In(p)} \mathbf{owner}_t = p) \land \right. \right.
                            ( \land (owner_t = p \rightarrow factor_t = factor_p) \land
                                           (owner_t \neq p \rightarrow factor_t \leq factor_p) ) \land
                            \operatorname{in}_p \leq \operatorname{out}_p \wedge (\operatorname{factor}_p < 1 \rightarrow \operatorname{in}_p = \operatorname{out}_p)
```

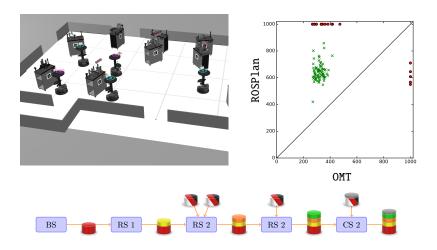
2. Reachability analysis for hybrid systems with HyPro



Source: E. Ábrahám, X. Chen, S. Sankaranarayanan, S. Schupp. PhD Chen, PhD Schupp, Information and Computation'22, IRI'18, SEFM'18, TACAS'18, NFM'17, QAPL'17, ARCH'15, CvPhy'15, NFM'15, FMCAD'14, CAV'13, FTSCS'13, NOLCOS'13, RTSS'12, EUROCAST'11, RP'11.

49 / 105 Prika Ábrahám - 94 / 105

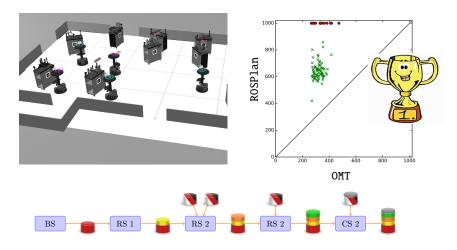
3. Planning with Optimization Modulo Theories



Source: E. Ábrahám, G. Lakemeyer, F. Leofante, T. D. Niemüller, A. Tacchella. PhD Leofante, IJCAl'20, Information Systems Frontiers 2019, ECMS'19, AAAl'18, iFM'18, ICAPS'17, PlanRob'17, IRI'17.

Erika Ábrahám - 95 / 105

3. Planning with Optimization Modulo Theories



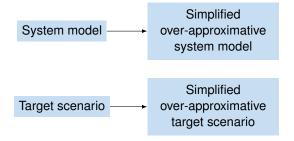
Source: E. Ábrahám, G. Lakemeyer, F. Leofante, T. D. Niemüller, A. Tacchella. PhD Leofante, IJCAl'20, Information Systems Frontiers 2019, ECMS'19, AAAl'18, iFM'18, ICAPS'17, PlanRob'17, IRI'17.

Mish Erika Ábrahám - 95 / 105

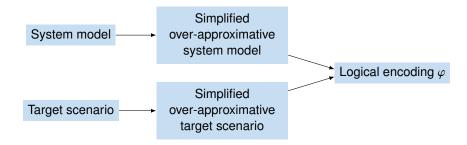
System model

Target scenario

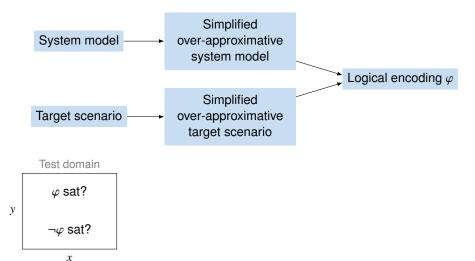
Erika Ábrahám - 96 / 105



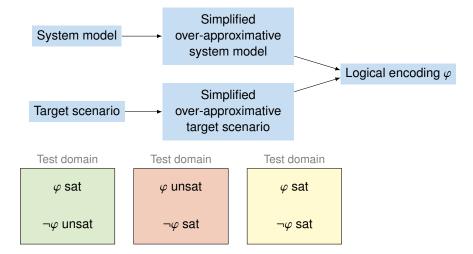
Frika Ábrahám - 96 / 105



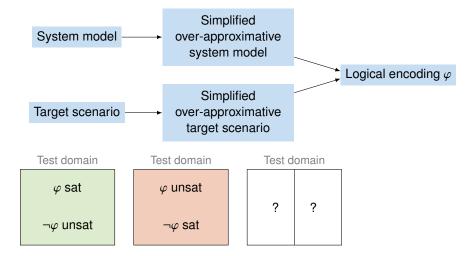
William Erika Ábrahám - 96 / 105



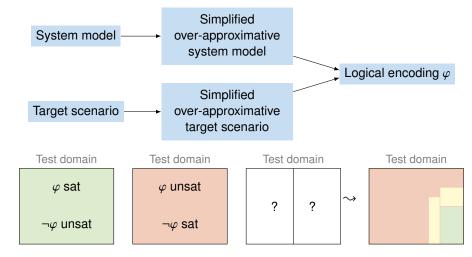
Erika Ábrahám - 96 / 105



William Erika Ábrahám - 96 / 105

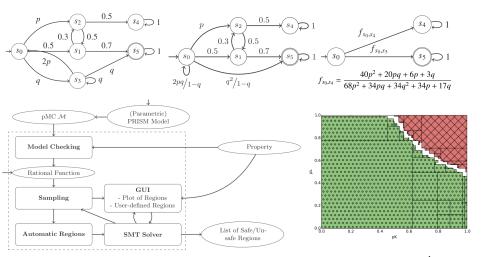


Brika Ábrahám - 96 / 105



Erika Ábrahám - 96 / 105

5. Parameter synthesis for probabilistic systems



Source: C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen, E. Ábrahám. **PROPhESY: A probabilistic parameter synthesis tool.**

1 D (0)///5

In Proc. of CAV'15.

Man Erika Ábrahám - 97 / 105

Contents

- SAT solving
 - Propositional logic
 - DPLL+CDCL SAT solving
 - Propositional encoding examples
 - Hands-on
- SMT solving
 - Approaches
 - SMT-RAT
 - SMT-LIB
 - SMT solvers as integrated engines
 - Future challenges
 - Hands-on

Brika Ábrahám - 98 / 105

Usage of SMT solvers

- Standard input language, benchmarks
- Online usage, command-line, programming interfaces
- Black-box usage possible, but specific knowledge is advantageous
 - for efficient usage and
 - selection of the best fitting tool (e.g. fast vs complete).

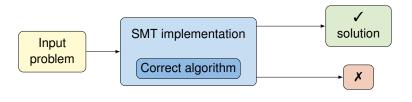
Frika Ábrahám - 99 / 105

■ Theoretical basics: algorithms with correctness proofs.

Correct algorithm

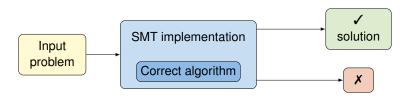
Erika Ábrahám - 100 / 105

- Theoretical basics: algorithms with correctness proofs.
- Reliable tools: in QF_NRA for SMT-COMP'21, no bugs discovered on large benchmark sets.



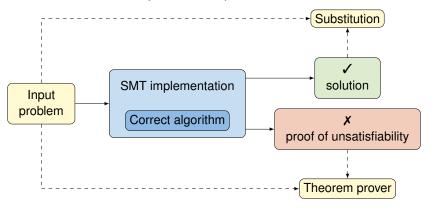
Erika Ábrahám - 100 / 105

- Theoretical basics: algorithms with correctness proofs.
- Reliable tools: in QF_NRA for SMT-COMP'21, no bugs discovered on large benchmark sets.
- But still: bugs can remain undetected for a long time.



Erika Ábrahám - 100 / 105

- Theoretical basics: algorithms with correctness proofs.
- Reliable tools: in QF_NRA for SMT-COMP'21, no bugs discovered on large benchmark sets.
- But still: bugs can remain undetected for a long time.
- Solution: automatically checkable proof certificates.



Lika Ábrahám - 100 / 105

Further functionalities

- Model generation
- Explanations of unsatisfiability (unsat cores, interpolants)
- Optimization
- Satisfiability for quantified formulas
- Quantifier elimination (get all solutions symbolically)
- Scalability
 - Preprocessing
 - Heuristics, especially variable ordering
 - Machine learning
 - Closer integration of decision procedures
 - Parallelization

Erika Ábrahám - 101 / 105

Contents

- SAT solving
 - Propositional logic
 - DPLL+CDCL SAT solving
 - Propositional encoding examples
 - Hands-on
- SMT solving
 - Approaches
 - SMT-RAT
 - SMT-LIB
 - SMT solvers as integrated engines
 - Future challenges
 - Hands-on

102 / 105 Erika Ábrahám - 102 / 105

SMT-LIB theories

Syntax of core theory

```
:sorts ((Bool 0))
    :funs (
(true Bool)
(false Bool)
(not Bool Bool)
(and Bool Bool Bool :left-assoc)
...
(par (A) (= A A Bool :chainable))
(par (A) (ite Bool A A A))
...
```

Erika Ábrahám - 103 / 105

SMT-LIB theories

Syntax of real theory

```
:sorts ((Real 0))
    :funs (
...
(+ Real Real Real :left-assoc)
(* Real Real Real :left-assoc)
...
(< Real Real Bool :chainable)
...
)</pre>
```

William Erika Ábrahám - 103 / 105

- Lisp-like script language
- Supported by essentially all SMT solvers
- Easy to parse and extend

Boolean example

```
(set-logic QF_UF)
(declare-const p Bool)
(assert (and p (not p)))
(check-sat)
```

Tika Ábrahám - 104 / 105

- Lisp-like script language
- Supported by essentially all SMT solvers
- Easy to parse and extend

Linear integer example

```
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (= (- x y) (+ x (- y) 1)))
(check-sat)
```

Times Erika Ábrahám - 104 / 105

- Lisp-like script language
- Supported by essentially all SMT solvers
- Easy to parse and extend

Unsatisfiable cores

```
(set-logic QF_UF)
(set-option :produce-unsat-cores true)
(declare-const p Bool)
(declare-const q Bool)
(declare-const r Bool)
(assert (! (=> p q) :named a))
(assert (! (=> q r) :named b))
(assert (! (not (=> p r)) :named c))
(assert ...)
(check-sat)
(get-unsat-core)
```

William Erika Ábrahám - 104 / 105

- Lisp-like script language
- Supported by essentially all SMT solvers
- Easy to parse and extend

Optimization

```
(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)
(assert (and (< y 5) (< x 2)))
(assert (< (- y x) 1))
(maximize (+ x y))
(check-sat)
(get-objectives)</pre>
```

Historia Abrahám - 104 / 105

Solving theory formulas with SMT solvers

- https://cvc5.github.io/tutorials/beginners
- SMT-LIB input: https://microsoft.github.io/z3guide/docs/logic/intro/ https://smt-lib.org/examples.shtml
- Z3/cvc5 Python interface: https://ericpony.github.io/z3py-tutorial/guide-examples.htm

Erika Ábrahám - 105 / 105