Understanding and using SAT and SMT solvers
Erika Abraham
RWTH Aachen University, Germany

14th Summer School on Formal Techniques
May 24-30, 2025

The Xmas problem

There are three types of Xmas presents Santa Claus can make.
m Santa Claus wants to reduce the overhead by making only two types.
He needs at least 100 presents.
He needs at least 5 of either type 1 or type 2.
He needs at least 10 of the third type.
Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
Santa Claus is late, and he has only 3 hours left.
Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
He has 300 EUR for presents in total.

BT Erika Abraham -

The Xmas problem

There are three types of Xmas presents Santa Claus can make.
m Santa Claus wants to reduce the overhead by making only two types.
He needs at least 100 presents.
He needs at least 5 of either type 1 or type 2.
He needs at least 10 of the third type.
Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
Santa Claus is late, and he has only 3 hours left.
Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
He has 300 EUR for presents in total.

P1=0Vpy=0Vp3=0)Ap;+py+p3=>100A
(P1>5Vpr =5 Ap3>10Ap; +2pr+5p3 <180 A
3p1 +2p2 + p3 <300

BT Erika Abraham -

The Xmas problem

There are three types of Xmas presents Santa Claus can make.
m Santa Claus wants to reduce the overhead by making only two types.
He needs at least 100 presents.
He needs at least 5 of either type 1 or type 2.
He needs at least 10 of the third type.
Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
Santa Claus is late, and he has only 3 hours left.
Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
He has 300 EUR for presents in total.

P1=0Vpy=0Vp3=0)Ap;+py+p3=>100A
(P1>5Vpr =5 Ap3>10Ap; +2pr+5p3 <180 A
3p1 +2p2 + p3 <300

Logic:
BT Erika Abraham -

The Xmas problem

There are three types of Xmas presents Santa Claus can make.
m Santa Claus wants to reduce the overhead by making only two types.
He needs at least 100 presents.
He needs at least 5 of either type 1 or type 2.
He needs at least 10 of the third type.
Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
Santa Claus is late, and he has only 3 hours left.
Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
He has 300 EUR for presents in total.

P1=0Vpy=0Vp3=0)Ap;+py+p3=>100A
(P1>5Vpr =5 Ap3>10Ap; +2pr+5p3 <180 A
3p1 +2p2 + p3 <300

Logic: Linear integer arithmetic.
M Erika Abraham -

The traveller Eve’s problem

RS Erika Abraham -

The traveller Eve’s problem

Eve is eager to make scientific visits.
m She has 100 travel wishes Ay, ...,A100.
m She is allowed to make only 5 travels.
m She wants to be physically at A;.
m To coordinate a project, she needs to visit either A, or As.
m Travel A; costs C; EUR.
m Eve can spend up to C EUR.
m Travel A; takes T; days.
m Eve wants to travel at least T days.

RS Erika Abraham -

The traveller Eve’s problem

Eve is eager to make scientific visits.
m She has 100 travel wishes Ay, ...,A100.
m She is allowed to make only 5 travels.
m She wants to be physically at A;.
m To coordinate a project, she needs to visit either A, or As.
m Travel A; costs C; EUR.
m Eve can spend up to C EUR.
m Travel A; takes T; days.
m Eve wants to travel at least T days.
100
(N (@=0nc;i=0A5=0) v (g =1 /\ci=C,-/\t,-:T,-)))/\
i=1
100 100 100

(ZaiSS)A(al “DAl@m=1Va = l)/\(ZciSC)A(;t,-ZT)

i=1 i=1

RS Erika Abraham -

The traveller Eve’s problem

Eve is eager to make scientific visits.
m She has 100 travel wishes Ay, ...,A100.
m She is allowed to make only 5 travels.
m She wants to be physically at A;.
m To coordinate a project, she needs to visit either A, or As.
m Travel A; costs C; EUR.
m Eve can spend up to C EUR.
m Travel A; takes T; days.
m Eve wants to travel at least T days.
100
(N (@=0nc;i=0A5=0) v (g =1 /\ci=C,-/\t,-:T,-)))/\
i=1
100 100 100

(ZaiSS)A(al “DAl@m=1Va = l)/\(ZciSC)A(;t,-ZT)

i=1 i=1

Logic: Mixed integer linear arithmetic.
M Erika Abraham -

Some technologies for satisfiability checking

Theorem Constraint
provers solvers
Computer SAT and SMT
algebra
solvers
systems

BT Erika Abraham -

Some technologies for satisfiability checking

Theorem Constraint
provers solvers
Computer SAT and SMT
algebra
solvers
systems

BT Erika Abraham -

Some technologies for satisfiability checking

SAT and SMT
solvers

BT Erika Abraham -

L
c
©
S
o}

o
[}
>
)

©

8

T

2020

2010

2000

1990

1980

1970

1960

L
c
©
S
o}

o
[}
>
)

©

8

T

2020
&

2010

1990

1980

1970

1960

SAT

Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.

m A wide range of applications, e.g., verification, synthesis,
combinatorial optimisation, etc.

BT Erika Abraham -

Satisfiability checking for propositional logic

Success story: SAT-solving
m Practical problems with millions of variables are solvable.

m A wide range of applications, e.g., verification, synthesis,
combinatorial optimisation, etc.

Community support:
m Standard input language.
m Large benchmark library.
m Competitions since 2002.

m SAT Live! forum as community platform, dedicated conferences,
journals, etc.

BT Erika Abraham -

L
c
©
S
o}

o
[}
>
)

©

8

T

2020
&

2010

1990

1980

1970

1960

SAT

T T
1980 1990 2020

1970

SAT

1960

L
c
©
S
o}

o
[}
>
)

©

8

T

SMT

Satisfiability modulo theories (SMT) solving

Satisfiability modulo theories (SMT) solving:
m Propositional logic is sometimes too weak for modelling.

m Increase expressiveness: quantifier-free (QF) fragments of
first-order logic over various theories.

RS Erika Abraham -

Satisfiability modulo theories (SMT) solving

Satisfiability modulo theories (SMT) solving:
m Propositional logic is sometimes too weak for modelling.

m Increase expressiveness: quantifier-free (QF) fragments of
first-order logic over various theories.

Community support:
m SMT-LIB: standard input language since 2004.
m Large (~ 250.000) benchmark library.
m Competitions since 2005.

RS Erika Abraham -

@ SAT solving
m Propositional logic
m DPLL+CDCL SAT solving
m Propositional encoding examples
m Hands-on

@ SMT solving
m Approaches

m SMT-RAT

m SMT-LIB

m SMT solvers as integrated engines
m Future challenges

m Hands-on

RS Erika Abraham -

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.

RS Erika Abraham - 10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.
Syntactic sugar:

RS Erika Abraham -

10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.
Syntactic sugar:

RS Erika Abraham -

10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.
Syntactic sugar:

L =(aN-a)

RS Erika Abraham -

10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.
Syntactic sugar:

[
I

(a N —a)

RS Erika Abraham -

10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.
Syntactic sugar:

L =(aN-a)
T =(aV -a)

RS Erika Abraham -

10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.
Syntactic sugar:

L =(aN-a)
T =(aV -a)
(e vV @)=

RS Erika Abraham -

10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.
Syntactic sugar:

L =(aN-a)
T =(aV -a)
C o1 VvV @)i==((me1) A (=g2))

RS Erika Abraham -

10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.
Syntactic sugar:

L =(aN-a)

T =(aV -a)
C o1 VvV g)=((0e1) A (m¢g2))
(o1 = ¢)=

RS Erika Abraham -

10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.
Syntactic sugar:

L =(aN-a)

T =(aV -a)
C o1 VvV g)=((0e1) A (m¢g2))
C o1 = ¢)=V e)

RS Erika Abraham -

10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.
Syntactic sugar:

L =(aN-a)

T =(aV -a)
C o1 VvV g)=((0e1) A (m¢g2))
C o1 = ¢)=V e)
(o1 © @)=

RS Erika Abraham - 10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

p:=al (=g | (@A)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.
Syntactic sugar:

L =(aN-a)
T =(aV -a)
C o1 Vo)i==((me1) A (=¢2))
(o1 = ¢)=((=¢1)V¢2)
C o1 o @)i=Up1r = @) A2 = ¢1))

RS Erika Abraham - 10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

al (=) | (¢Ae)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.

Syntactic sugar:

Y1
1
¥1
1

A~ AN S~

RS Erika Abraham -

@7 | <4+

¥2
¥2
¥2
¥2

=(aN-a)
=(aV -a)
) = =((=¢1) A (=¢2))
) = ((me1) V ¢2)
) = (o1 = @2) A2 = 1))
)=

10/105

Syntax of propositional logic

Abstract syntax of well-formed propositional logic formulae:

al (=) | (¢Ae)

where AP is a set of (atomic) propositions (Boolean variables) and a € AP.

Syntactic sugar:

Y1
1
¥1
1

A~ AN S~

RS Erika Abraham -

@7 | <4+

¥2
¥2
¥2
¥2

=(aN-a)
=(aV -a)
) = =((=¢1) A (=¢2))
) = ((me1) V ¢2)
) = (o1 = @2) A2 = 1))
) = (1 © (m¢2))

10/105

Semantics of propositional logic

m Truth tables define the semantics (=meaning) of the operators.
They can be used to define the semantics of formulae inductively over
their structure.

BT Erika Abraham - 11/105

Semantics of propositional logic

m Truth tables define the semantics (=meaning) of the operators.
They can be used to define the semantics of formulae inductively over
their structure.

m Convention: 0= false, 1= true

BT Erika Abraham - 11/105

Semantics of propositional logic

m Truth tables define the semantics (=meaning) of the operators.
They can be used to define the semantics of formulae inductively over
their structure.

m Convention: 0= false, 1= true

pla||-r|PAqg|PVg|P—oq|Peoq| Py
ool 1] o 0 1 1 0
o1 1] o 1 1 0 1
1{offo] o 1 0 0 1
1[1]fo] 1 1 1 1 0

BT Erika Abraham - 11/105

Semantics of propositional logic

m Truth tables define the semantics (=meaning) of the operators.
They can be used to define the semantics of formulae inductively over
their structure.

m Convention: 0= false, 1= true

pla||-r|PAqg|PVg|P—oq|Peoq| Py
ool 1] o 0 1 1 0
o1 1] o 1 1 0 1
1{offo] o 1 0 0 1
1[1]fo] 1 1 1 1 0

Each possible assignment is covered by a line of the truth table.
«a satisfies ¢ iff in the line for @ and the column for ¢ the entry is 1.

BT Erika Abraham - 11/105

Conjunctive normal form

m A literal is either a variable or the negation of a variable.
m A clause is a disjunction of literals.

m A formula in Conjunctive Normal Form (CNF) is a conjunction of
clauses.

RS Erika Abraham - 12/105

Conjunctive normal form

m A literal is either a variable or the negation of a variable.
m A clause is a disjunction of literals.

m A formula in Conjunctive Normal Form (CNF) is a conjunction of
clauses.

m Every propositional logic formula can be converted
to an equi-satisfiable CNF in linear time and space
on the cost of (linearly many) new variables.

RS Erika Abraham - 12/105

Tseitin’s CNF encoding

Consider the formula ¢ = (a — (b A ©)).

Tseitin’s encoding: Q hy
(h1 & (@ = h))A

(hy & (b AC)A Q ° hy
(h1)
OO

RS Erika Abraham - 13/105

Tseitin’s CNF encoding

Consider the formula ¢ = (a — (b A ©)).

Tseitin’s encoding: Q hy
(h1 & (@ = h))A

(hy & (b AC)A Q ° hy
(h1)
OO

m Each node’s encoding has a CNF representation with 3 or 4 clauses.

hi & (a—> h)inCNF: (b Va)A(hy V=h) A(=h V—-aV h)
hy & (b Ac)inCNF: (=hy VDY A (=hy V) A(hy V =bV —c)

RS Erika Abraham - 13/105

@ SAT solving
m Propositional logic
m DPLL+CDCL SAT solving
m Propositional encoding examples
m Hands-on

RS Erika Abraham - 14/105

Satisfiability problem

Given:
m Propositional logic formula ¢ in CNF.
Question:
m Is ¢ satisfiable?
(Is there a model for ¢?)

RS Erika Abraham - 15/105

1. Exploration: Exploration

(aveyn(=avVeyA@V —c)A(maV —c)AN(aV b)A(=aVb)A(aV —bV —c)

RS Erika Abraham - 16/105

1. Exploration: Exploration

(aveyn(=avVeyA@V —c)A(maV —c)AN(aV b)A(=aVb)A(aV —bV —c)

RS Erika Abraham - 16/105

1. Exploration: Exploration

(aveyA(ave)yAn(@ay —c)A(maV —c)AN@VDb)AN(—aVb)A(aV —=bV =c)

RS Erika Abraham - 16/105

1. Exploration: Exploration

(aveyA(ave)yAn(@ay —c)A(maV —c)AN@VDb)AN(—aVb)A(aV —=bV =c)

RS Erika Abraham - 16/105

1. Exploration: Exploration

(aveyn(=avVeyA@V —c)A(maV —c)AN(aV b)A(=aVb)A(aV —bV —c)

RS Erika Abraham - 16/105

1. Exploration: Exploration

(aveyn(=avVeyA@V —c)A(maV —c)AN(aV b)A(=aVb)A(aV —bV —c)

unsatisfiable problem

.) ALWAYS 2" assignments need to be tested
in n variables

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyn(=avVeyA@V —c)A(maV —c)AN(aV b)A(=aVb)A(aV —bV —c)

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyn(=avVeyA@V —c)A(maV —c)AN(aV b)A(=aVb)A(aV —bV —c)

(Kvav...ve) (FA v v...ve)

(GLv...vE& v e v...vE)

Ruleyes

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyA(=avVe)yAaV —c)A(=aN =c)AN(aVb)A(—aV b)A (aV —bV —c)

bV o)

(Kvav...ve) (FA v v...ve)

(GLv...vE& v e v...vE)

Ruleyes

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyA(ave)A(@aV -c)A(maV -c)AN@Vb)A(—aVb)A(aV —bV =c)

\/

(©)

(Kvav...ve) (FA v v...ve)

(GLv...vE& v e v...vE)

Ruleyes

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyA(—ave)A(@aV -c)A(maV -c)AN@Vb)AN(—aVb)A(aV —=bV =c)

(true)

(Kvav...ve) (FA v v...ve)

(GLv...vE& v e v...vE)

Ruleyes

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyA(mave)A(@aV -c)A(maV -c)AN(@Vb)A(—aVb)A(aV —bV =c)

(Kvav...ve) (FA v v...ve)

Ruleyes
(GLv...vE& v e v...vE)
Hx. C /\ CX /\ C—UC
C A A\ A\ resolvent(cy, c—x, x)

cx€Cy cx€Cy

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyA(—ave)A(@aV —c)A(maV -c)AN@Vb)A(—aVb)A(aV —bV =c)

() (b Vo) (=¢) (b V =0) (b) (=b V =c)

(Kvav...ve) (FA v v...ve)

Ruleyes
(GLv...vE& v e v...vE)
Hx. C /\ CX /\ C—UC
C A A\ A\ resolvent(cy, c—x, x)

cx€Cy cx€Cy

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyA(—ave)A(@aV —c)A(maV -c)AN@Vb)A(—aVb)A(aV —bV =c)

() (b Vo) (=¢) (b V =0) (b) (=b V =c)

Hx . C /\ CX /\ C—UC

C A A\ A\ resolvent(cy, c—x, x)

cx€Cy cx€Cy

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyA(—ave)A(@aV —c)A(maV -c)AN@Vb)A(—aVb)A(aV —bV =c)

() (b Vo) (=¢) (b V =0) (b) (=b V =c)

(c) (=c)

Hx . C /\ CX /\ C—UC

C A A\ A\ resolvent(cy, c—x, x)

cx€Cy cx€Cy

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyA(—ave)A(@aV —c)A(maV -c)AN@Vb)A(—aVb)A(aV —bV =c)

(©) (b Vo) (=¢) (bV =c) b) (=b V =¢)
(c) (=0)

0

Hx . C /\ CX /\ C—UC

C A A\ A\ resolvent(cy, c—x, x)

cx€Cy cx€Cy

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyA(—ave)A(@aV —c)A(maV -c)AN@Vb)A(—aVb)A(aV —bV =c)

(©) (b Vo) (=¢) (bV =c) b) (=b V =¢)
(c) (=0)

0

Hx . C /\ CX /\ C—UC

C A A\ A\ resolvent(cy, c—x, x)

cx€Cy cx€Cy

RS Erika Abraham - 16/105

2. Proof system: Boolean resolution

(aveyA(=avVe)yAaV —c)A(=aN =c)AN(aV b)A(=aV b)A (aV bV —c)

(b Vv =c) (b) (=b V =c)

(c) (b Ve (—|c)

1
~

(=)

(()\ /

C N C N Co

C A A\ A\ resolvent(cy, c—x, x)
c€Cy

dx.

16/105

RS Erika Abraham -

SAT solving: The DPLL+CDCL idea

[Davis et al., ’60/61] [Marques-Silva et al., '96]

RS Erika Abraham - 17/105

SAT solving: The DPLL+CDCL idea

[Davis et al., ’60/61] [Marques-Silva et al., '96]

Proof system B | Il

E
=]
(=

RS Erika Abraham - 17/105

SAT solving: The DPLL+CDCL idea

[Davis et al., ’60/61] [Marques-Silva et al., '96]

RS Erika Abraham - 17/105

SAT solving: The DPLL+CDCL idea

[Davis et al., ’60/61] [Marques-Silva et al., '96]

Exploration

RS Erika Abraham - 17/105

SAT solving: The DPLL+CDCL idea

[Davis et al., ’60/61] [Marques-Silva et al., '96]

Exploration

Look-ahead

RS Erika Abraham - 17/105

SAT solving: The DPLL+CDCL idea

[Davis et al., ’60/61] [Marques-Silva et al., '96]

Exploration

Look-ahead

Proof system B

RS Erika Abraham - 17/105

The DPLL+CDCL algorithm

if ('BCP()) return UNSAT;
while (true)
{
if (decide()) return SAT;
while (IBCP())
if (Iresolve_conflict()) return UNSAT;

The DPLL+CDCL algorithm

if ('BCP()) return UNSAT;
while (true)
{
if (decide()) return SAT;
while (IBCP())
if (Iresolve_conflict()) return UNSAT;

Boolean constraint propagation.
Return false if reached a conflict.

The DPLL+CDCL algorithm

if (IBCP()) return UNSAT;
while (true)

{

if (decide()) return SAT;

while (IBCP())

Choose the next variable
and value.

Return false if all variables
are assigned.

if (Iresolve_conflict()) return UNSAT;

Boolean constraint propagation.
Return false if reached a conflict.

The DPLL+CDCL algorithm

Choose the next variable
and value.

Return false if all variables
are assigned.

if (IBCP()) return UNSAT;
while (true)

{

if (decide()) return SAT;
while (IBCP())
if (Iresolve_conflict()) return UNSAT;

) \

Conflict resolution and
backtracking. Return false
if impossible.

Boolean constraint propagation.
Return false if reached a conflict.

RS Erika Abraham - 18/105

Status of a clause

m Assume in the following: all literals in a clause have different variables

RS Erika Abraham - 19/105

Status of a clause

m Assume in the following: all literals in a clause have different variables
m Given a (partial) assignment, a clause can be

satisfied: at least one literal is satisfied
unsatisfied: all literals are assigned but none are statisfied
unit: all but one literals are assigned but none are satisfied

unresolved: all other cases

Example : | x1 | x | x3 | ¢ = (x1 VX2 VX3)
10 satisfied
0 | 0| O | unsatisfied
00 unit
0 unresolved

BCP: Unit clauses are used to imply consequences of decisions.

RS Erika Abraham - 19/105

Status of a clause

m Assume in the following: all literals in a clause have different variables
m Given a (partial) assignment, a clause can be

satisfied: at least one literal is satisfied
unsatisfied: all literals are assigned but none are statisfied
unit: all but one literals are assigned but none are satisfied
unresolved: all other cases
Example : | x1 | x | x3 | ¢ = (x1 VX2 VX3)

10 satisfied

0 | 0| O | unsatisfied

00 unit

0 unresolved

BCP: Unit clauses are used to imply consequences of decisions.
Some notations:

Decision Level (DL) is a counter for decisions

Antecedent(¢): unit clause implying the value of literal ¢ (nil if decision)

RS Erika Abraham - 19/105

DPLL: Exploration with propagation

(mx VYV AV -2)A=xV -y)
— e — — e

€1 (&) 3

RS Erika Abraham -

DPLL: Exploration with propagation

(~xVyVZAQYV-2)A(mxV)
———— —
C1 c c3

Static variable order x < y < z, sign: try positive first

RS Erika Abraham - 20/105

DPLL: Exploration with propagation

(CxVYyVAQYV-2)A(xV o)
———

cl (&) e

Static variable order x < y < z, sign: try positive first

RS Erika Abraham - 20/105

DPLL: Exploration with propagation

(=xVyV zZ)AQYV-2)A(=xV)
———— e e N
C1 (&) c3

Static variable order x < y < z, sign: try positive first

RS Erika Abraham - 20/105

DPLL: Exploration with propagation

(~xVyV2OAQYV 2 A(=XV =)
—_— N —
c 1) 3

Static variable order x < y < z, sign: try positive first

RS Erika Abraham - 20/105

DPLL: Exploration with propagation

(—xVYVIAGV-2)A(=xV-y)
—————— e N
cl 1) 3

Static variable order x < y < z, sign: try positive first

RS Erika Abraham - 20/105

DPLL: Exploration with propagation

(xVYV2IOAQGV-2)A(—xVy)
———— e — -
c1 c 3

Static variable order x < y < z, sign: try positive first

RS Erika Abraham - 20/105

DPLL: Exploration with propagation

(xVYV2IOAQGV2)A(—xVy)
———— e — -
c1 c 3

Static variable order x < y < z, sign: try positive first

RS Erika Abraham - 20/105

DPLL: Exploration with propagation

(~xVYVZAQ V2 A(=xV)
———— e —

C1 c2 Cc3

Static variable order x < y < z, sign: try positive first

Efficient propagation with the watched literal scheme.

RS Erika Abraham -

20/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

RS Erika Abraham - 21/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(@avVb)yA(=bVc)A(=bV —c)

RS Erika Abraham - 21/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(@avVb)yA(=bVc)A(=bV —c)

B-propagate -

RS Erika Abraham - 21/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision

Look-ahead: B-propagation

Proof system: B-conflict resolution
(avb)yAN(=bVc)AN(=bV —c)

B-propagate -
B-decision a = false

RS Erika Abraham - 21/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(@aVb)yAN(=bVc)A(=bV —c)

B-propagate -
B-decision a = false
B-propagate

RS Erika Abraham - 21/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(avb)yAN(=bVc)AN(=bV =)

B-propagate -
B-decision a = false
B-propagate b = true

RS Erika Abraham - 21/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(aVbYyAN(=bVc)A(=bV —c)

B-propagate -

B-decision a = false
B-propagate b = true
c = true

RS Erika Abraham - 21/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(aVbYyAN(=bVc)A(=bV —c)

B-propagate -

B-decision a = false
B-propagate b = true
c = true

B-conflict resolution

RS Erika Abraham - 21/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(aVbYyAN(=bVc)A(=bV —c)

B-propagate -

B-decision a = false
B-propagate b = true
c = true

B-conflict resolution
(=bV =) (=b V)
(=b)

RS Erika Abraham - 21/105

Resolution example revisited

(aveyA(maveyA@V -c)A(=aV —c)A(@aVb)A(—aVb)A(aV —bV —c)

RS Erika Abraham - 22/105

Resolution example revisited

(aveyA(maveyA@V -c)A(=aV —c)A(@aVb)A(—aVb)A(aV —bV —c)

B-propagate -

RS Erika Abraham - 22/105

Resolution example revisited

(aveyA(=aveyA@yV —c)A(=aV —c)AN(@Vb)A(—aVb)A(aV —-bV —c)

B-propagate -

B-decide -c

RS Erika Abraham - 22/105

Resolution example revisited

(aveyA(—ave)A(@aV —c)AN(=aN —c)AN(@Vb)A(—maV b)A(aV —=bV —c)

B-propagate -
B-decide -c
B-propagate a

RS Erika Abraham - 22/105

Resolution example revisited

(aveyA(—ave)A(@aV —c)AN(=aN —c)AN(@Vb)A(—maV b)A(aV —=bV —c)

\/

(©)

B-propagate -
B-decide -c
B-propagate a
(maVe)(aVe)

(©)

B-conflict resolution

RS Erika Abraham - 22/105

Resolution example revisited

(aveyA(maveyA@V -c)A(=aV —c)A(@aVb)A(—aVb)A(aV —bV —c)

\/

(©)

RS Erika Abraham - 22/105

Resolution example revisited

(aveyA(=ave)yA@yv -c)A(=aV —c)A(@aVb)A(—aVb)A(aV bV —c)

\/

()

B-propagate c

RS Erika Abraham - 22/105

Resolution example revisited

(aveoyA(ave)yA(@V —c)A(—aV —c)AN(@VDb)A(—aVb)A(aV —=bV —c)

\/

()

B-propagate c

RS Erika Abraham - 22/105

Resolution example revisited

(aveoyA(ave)yA(@V —c)A(—aV —c)AN(@VDb)A(—aVb)A(aV —=bV —c)

VAR

pV;
) (0
©) (w)

e

B-propagate c
a
(ma V =c) (aV —c)
B-conflict resolution (=0) ()
0

RS Erika Abraham - 22/105

Conflict clauses and (binary) resolution

m Consider the following example:

X2 = 0@2

.\

C1

c1 = (x4 VX2 VXs)
¢y = (x4 V x10 V X6)
€3 = (=5 V =6 V —x7) X4 3
¢4 = (—x6 V X7)

X10 = 0@3

m Asserting conflict clause: ¢s : (x2 V =x4 V x19)

x7 =0@5

C4

23/105

RS Erika Abraham -

Conflict clauses and (binary) resolution

m Assigment order: x4, x5, x6,x7 Conflict clause: ¢5 : (x V —x4 V X10)

¢ =(=x4 VX2V xs)
¢z = (x4 V X10 V X6)
¢3 = (x5 V =xg V —x7) (T
cq = (=x6 V x7)

X10 =0@3 %

m Starting with the conflicting clause, apply resolution with the
antecedent of the last assigned literal, until we get an asserting
clause:

m T1 = Res(cy4, c3,%7) = (mx5 V —xg)
mT2= Res(T1 ,€2,Xg) = (mx4 V —X5 V X10)
m T3 =Res(T2,c1,x5) = (x2 V =x4 V X10)

RS Erika Abraham - 24/105

Unsatisfiable core

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable
subset of the original set of clauses.

BT Erika Abraham -

Unsatisfiable core

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable
subset of the original set of clauses.

m The set of all original clauses is an unsatisfiable core.

BT Erika Abraham -

Unsatisfiable core

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable
subset of the original set of clauses.

m The set of all original clauses is an unsatisfiable core.

m The set of those original clauses that were used for resolution in
conflict analysis during SAT-solving (inclusively the last conflict at
decision level 0) gives us an unsatisfiable core which is in general
much smaller.

BT Erika Abraham -

Unsatisfiable core

An unsatisfiable core of an unsatisfiable CNF formula is an unsatisfiable
subset of the original set of clauses.

m The set of all original clauses is an unsatisfiable core.

m The set of those original clauses that were used for resolution in
conflict analysis during SAT-solving (inclusively the last conflict at

decision level 0) gives us an unsatisfiable core which is in general
much smaller.

m However, this unsatifiable core is still not always minimal (i.e., we can
remove clauses from it still having an unsatisfiable core).

BT Erika Abraham -

The resolution graph

A resolution graph gives us more information to get a minimal unsatisfiable

core.

@© Original Clause
@ Learned Clause

26/105

RS Erika Abraham -

Termination

It is never the case that the solver enters decision level dl again with the
same partial assignment.

BT Erika Abraham -

Termination

It is never the case that the solver enters decision level dl again with the
same partial assignment.

Proof.

Define a partial order on partial assignments: a < g iff either a is an
extension of B or @ has more assignments at the smallest decision level at
that @ and 8 do not agree.

BCP decreases the order, conflict-driven backtracking also. Since the
order always decreases during the search, the theorem holds. m|

BT Erika Abraham -

Decision heuristics: VSIDS

m VSIDS (variable state independent decaying sum)
m Gives priority to variables involved in recent conflicts.

m “Involved” can have different definitions. We take those variables that
occur in clauses used for conflict resolution.

RS Erika Abraham - 28/105

Decision heuristics: VSIDS

m VSIDS (variable state independent decaying sum)

m Gives priority to variables involved in recent conflicts.

m “Involved” can have different definitions. We take those variables that
occur in clauses used for conflict resolution.

Each variable has a counter initialized to 0.

We define an increment value (e.g., 1).

When a conflict occurs, we increase the counter of each variable, that
occurs in at least one clause used for conflict resolution, by the
increment value.

Afterwards we increase the increment value (e.g., by 1).

For decisions, the unassigned variable with the highest counter is
chosen.

Periodically, all the counters and the increment value are divided by a
constant.

RS Erika Abraham - 28/105

Decision heuristics: VSIDS

VSIDS is a 'quasi-static’ strategy:
m static because it doesn’t depend on current assignment

m dynamic because it gradually changes. Variables that appear in
recent conflicts have higher priority.

This strategy is a conflict-driven decision strategy.

”...employing this strategy dramatically (i.e., an order of magnitude)
improved performance...”

RS Erika Abraham - 29/105

@ SAT solving
m Propositional logic
m DPLL+CDCL SAT solving
m Propositional encoding examples
m Hands-on

RS Erika Abraham - 30/105

Example 1: Seminar topic assignment

m n participants
m 7 topics
m Set of preferences E C {1,...,n} x{1,...,n}
(p, 1) € E means: participant p would take topic ¢

RS Erika Abraham - 31/105

Example 1: Seminar topic assignment

m n participants
m 7 topics
m Set of preferences E C {1,...,n} x{1,...,n}
(p, 1) € E means: participant p would take topic ¢

m Q: Can we assign to each participant a topic which he/she is willing to
take?

RS Erika Abraham - 31/105

Example 1: Propositional encoding

m Notation:

RS Erika Abraham - 32/105

Example 1: Propositional encoding

m Notation: x,, = “participant p is assigned topic ¢’

RS Erika Abraham - 32/105

Example 1: Propositional encoding

m Notation: x,, = “participant p is assigned topic ¢’
m Constraints:

RS Erika Abraham - 32/105

Example 1: Propositional encoding

m Notation: x,, = “participant p is assigned topic ¢’
m Constraints:
Each participant is assigned at least one topic:

RS Erika Abraham - 32/105

Example 1: Propositional encoding

m Notation: x,, = “participant p is assigned topic ¢’
m Constraints:
Each participant is assigned at least one topic:

A+

p=1\t=1

RS Erika Abraham - 32/105

Example 1: Propositional encoding

m Notation: x,, = “participant p is assigned topic ¢’
m Constraints:
Each participant is assigned at least one topic:

Each participant is assigned at most one topic:

RS Erika Abraham - 32/105

Example 1: Propositional encoding

m Notation: x,, = “participant p is assigned topic ¢’
m Constraints:
Each participant is assigned at least one topic:

n n
AV
p=1\t=1
Each participant is assigned at most one topic:

n n-1 n

AN N (5n v -m)

p=1t=1t=t+1

RS Erika Abraham - 32/105

Example 1: Propositional encoding

m Notation: x,, = “participant p is assigned topic ¢’
m Constraints:
Each participant is assigned at least one topic:

n n
AV
p=1\t=1
Each participant is assigned at most one topic:

n n-1 n

AN N (5n v -m)

p=1t=1t=t+1

Each participant is willing to take his/her assigned topic:

RS Erika Abraham - 32/105

Example 1: Propositional encoding

m Notation: x,, = “participant p is assigned topic ¢’
m Constraints:
Each participant is assigned at least one topic:

n n
AV
p=1\t=1
Each participant is assigned at most one topic:

n n-1 n

AN N (5n v -m)

p=1t=1t=t+1

Each participant is willing to take his/her assigned topic:

n

A\ N\

p=1 (p.H)¢E

RS Erika Abraham - 32/105

Example 1: Propositional encoding

RS Erika Abraham - 33/105

Example 1: Propositional encoding

Each topic is assigned to at most one participant:

RS Erika Abraham - 33/105

Example 1: Propositional encoding

Each topic is assigned to at most one participant:

n n n
/\ /\ /\ (ﬁxm’fVﬁme)

=1 p1=1 pa=p1+1

RS Erika Abraham - 33/105

Example 2: Placement of wedding guests

m Three chairsinarow: 1,2,3
m We need to place Aunt, Sister and Father.

m Constraints:

m Aunt doesn’t want to sit near Father
m Aunt doesn’t want to sit in the left chair
m Sister doesn’t want to sit to the right of Father

RS Erika Abraham - 34/105

Example 2: Placement of wedding guests

m Three chairsinarow: 1,2,3
m We need to place Aunt, Sister and Father.

m Constraints:

m Aunt doesn’t want to sit near Father
m Aunt doesn’t want to sit in the left chair
m Sister doesn’t want to sit to the right of Father

m Q: Can we satisfy these constraints?

RS Erika Abraham - 34/105

Example 2: Propositional encoding

RS Erika Abraham - 35/105

Example 2: Propositional encoding

m Notation:

RS Erika Abraham - 35/105

Example 2: Propositional encoding

m Notation: Aunt = 1, Sister = 2, Father =3
Left chair = 1, Middle chair = 2, Right chair = 3

Introduce a propositional variable for each pair (person, chair):
X, = “person p is sited in chair ¢”for 1 <p,c <3

RS Erika Abraham - 35/105

Example 2: Propositional encoding

m Notation: Aunt = 1, Sister = 2, Father =3
Left chair = 1, Middle chair = 2, Right chair = 3

Introduce a propositional variable for each pair (person, chair):
X, = “person p is sited in chair ¢”for 1 <p,c <3
m Constraints:

RS Erika Abraham - 35/105

Example 2: Propositional encoding

m Notation: Aunt = 1, Sister = 2, Father =3
Left chair = 1, Middle chair = 2, Right chair = 3

Introduce a propositional variable for each pair (person, chair):
X, = “person p is sited in chair ¢”for 1 <p,c <3

m Constraints:
Aunt doesn’t want to sit near Father:

RS Erika Abraham - 35/105

Example 2: Propositional encoding

m Notation: Aunt = 1, Sister = 2, Father =3
Left chair = 1, Middle chair = 2, Right chair = 3

Introduce a propositional variable for each pair (person, chair):
X, = “person p is sited in chair ¢”for 1 <p,c <3

m Constraints:
Aunt doesn’t want to sit near Father:

((x11 Vx13) = x32) Alx2 = (X371 A —x33))

RS Erika Abraham - 35/105

Example 2: Propositional encoding

m Notation: Aunt = 1, Sister = 2, Father =3
Left chair = 1, Middle chair = 2, Right chair = 3

Introduce a propositional variable for each pair (person, chair):
X, = “person p is sited in chair ¢”for 1 <p,c <3

m Constraints:
Aunt doesn’t want to sit near Father:

((x11 Vx13) = x32) Alx2 = (X371 A —x33))

Aunt doesn’t want to sit in the left chair:

RS Erika Abraham - 35/105

Example 2: Propositional encoding

m Notation: Aunt = 1, Sister = 2, Father =3
Left chair = 1, Middle chair = 2, Right chair = 3

Introduce a propositional variable for each pair (person, chair):
X, = “person p is sited in chair ¢”for 1 <p,c <3

m Constraints:
Aunt doesn’t want to sit near Father:

((x11 Vx13) = x32) Alx2 = (X371 A —x33))
Aunt doesn’t want to sit in the left chair:

X1,

RS Erika Abraham - 35/105

Example 2: Propositional encoding

m Notation: Aunt = 1, Sister = 2, Father =3
Left chair = 1, Middle chair = 2, Right chair = 3

Introduce a propositional variable for each pair (person, chair):
X, = “person p is sited in chair ¢”for 1 <p,c <3

m Constraints:
Aunt doesn’t want to sit near Father:

((x11 Vx13) = x32) Alx2 = (X371 A —x33))
Aunt doesn’t want to sit in the left chair:
—X1,1

Sister doesn’t want to sit to the right of Father:

RS Erika Abraham - 35/105

Example 2: Propositional encoding

m Notation: Aunt = 1, Sister = 2, Father =3
Left chair = 1, Middle chair = 2, Right chair = 3

Introduce a propositional variable for each pair (person, chair):
X, = “person p is sited in chair ¢”for 1 <p,c <3

m Constraints:
Aunt doesn’t want to sit near Father:

((e11 Vxi3) = —x32) A (X2 = (-x31 A =x33))
Aunt doesn’t want to sit in the left chair:
—X1,1
Sister doesn’t want to sit to the right of Father:

(x3,1 = "x22) A (32 — —x23)

RS Erika Abraham - 35/105

Example 2: Propositional encoding

RS Erika Abraham - 36/105

Example 2: Propositional encoding

Each person is placed:

RS Erika Abraham - 36/105

Example 2: Propositional encoding

Each person is placed:

(1,1 V12 Vxr3) Alxo Vaao Vxs) A(xsg VaxspVaxss)

3

A\ Ve

p=1 c=1

RS Erika Abraham - 36/105

Example 2: Propositional encoding

Each person is placed:

(1,1 V12 Vxr3) Alxo Vaao Vxs) A(xsg VaxspVaxss)

3

A\ Ve

p=1 c=1

At most one person per chair:

RS Erika Abraham - 36/105

Example 2: Propositional encoding

Each person is placed:

(1,1 V12 Vxr3) Alxo Vaao Vxs) A(xsg VaxspVaxss)

3
A\ Ve
p=1c=1
At most one person per chair:
3 303
/\(_‘Xpl,c \ _‘po,c)

pl=1p2=pl+1 c=1

RS Erika Abraham - 36/105

Example 3: Assignment of frequencies

m n radio stations
m For each station assign one of k transmission frequencies, k < n.

m E — set of pairs of stations, that are too close to have the same
frequency.

RS Erika Abraham - 37/105

Example 3: Assignment of frequencies

m n radio stations
m For each station assign one of k transmission frequencies, k < n.

m E — set of pairs of stations, that are too close to have the same
frequency.

m Q: Can we assign to each station one frequency, such that no station
pairs from E have the same frequency?

RS Erika Abraham - 37/105

Example 3: Propositional encoding

m Notation:

RS Erika Abraham - 38/105

Example 3: Propositional encoding

m Notation:
X, = “station s is assigned frequency f"for 1 <s <n, 1 <f <k

RS Erika Abraham - 38/105

Example 3: Propositional encoding

m Notation:
X, = “station s is assigned frequency f"for 1 <s <n, 1 <f <k
m Constraints:

RS Erika Abraham - 38/105

Example 3: Propositional encoding

m Notation:

X, = “station s is assigned frequency f"for 1 <s <n, 1 <f <k
m Constraints:

Every station is assigned at least one frequency:

RS Erika Abraham - 38/105

Example 3: Propositional encoding

m Notation:

X, = “station s is assigned frequency f"for 1 <s <n, 1 <f <k
m Constraints:

Every station is assigned at least one frequency:

AV

RS Erika Abraham - 38/105

Example 3: Propositional encoding

m Notation:
X, = “station s is assigned frequency f"for 1 <s <n, 1 <f <k
m Constraints:
Every station is assigned at least one frequency:
n k
AV
s=1 \[f=1

Every station is assigned at most one frequency:

RS Erika Abraham - 38/105

Example 3: Propositional encoding

m Notation:

X, = “station s is assigned frequency f"for 1 <s <n, 1 <f <k
m Constraints:

Every station is assigned at least one frequency:

MY

Every station is assigned at most one frequency:

n

k-1 k
AN N Grnvoxn)

s=1 f1=1£2=f1+1

RS Erika Abraham - 38/105

Example 3: Propositional encoding

m Notation:

X, = “station s is assigned frequency f"for 1 <s <n, 1 <f <k
m Constraints:

Every station is assigned at least one frequency:

MY

Every station is assigned at most one frequency:

n

k-1 k
AN N Grnvoxn)

s=1 fl=1 f2=f1+1
Close stations are not assigned the same frequency:

RS Erika Abraham - 38/105

Example 3: Propositional encoding

m Notation:

X, = “station s is assigned frequency f"for 1 <s <n, 1 <f <k
m Constraints:

Every station is assigned at least one frequency:

MY

Every station is assigned at most one frequency:

n

k-1 k
AN N Grnvoxn)

s=1 fl=1 f2=f1+1
Close stations are not assigned the same frequency:

For each (s1,s52) € E,
k
/\ (_‘xsl,f \4 —'xsz,f)
f=1

RS Erika Abraham - 38/105

@ SAT solving
m Propositional logic
m DPLL+CDCL SAT solving
m Propositional encoding examples
m Hands-on

RS Erika Abraham - 39/105

You need to have installed...

m Python

m Z3
https://github.com/exercism/z3/blob/main/docs/INSTALLATION.md

RS Erika Abraham - 40/105

SAT encodings

m Suppose we can solve the satisfiability problem... how can this help
us?

RS Erika Abraham - 41/105

SAT encodings

m Suppose we can solve the satisfiability problem... how can this help
us?

m There are numerous problems in the industry that are solved via the
satisfiability problem of propositional logic
m Logistics
m Planning
m Electronic Design Automation industry
m Cryptography
...

BT Erika Abraham - 41/105

DIMACS input syntax for SAT solvers

The DIMACS format for SAT solvers has three types of lines:
m header: “p cnf n m” in which

m n denotes the highest variable index and
m m the number of clauses.

m clauses: a sequence of integers ending with “0”
m comments: any line starting with “c

Example:
¢ example
pecnf24
(aVvb) A 1 20
(mnaVvb)y A -1 2 0
(av-b) A 1 -2 0
(maV =b) A -1 -2 0

RS Erika Abraham - 42/105

Example 2 (wedding): DIMACS format

Notation: Aunt = 1, Sister = 2, Father = 3
Left chair = 1, Middle chair = 2, Right chair = 3
Xp,c = “person p is sited in chair ¢” for 1 <p,c <3

Constraints:

(D (11 Vx13) = x32) Alxp = (mx31 A —x33)) (2) -
() (x31 = ~x22) A (32 = ~23) @ Ny Voo, e
() /\13)1:1 /\13,2:p1+1 /\3:1(_')6171,0 v _'xpz,c)

c example
penf24
(avb)y A 1 2 0

RS Erika Abraham - 43/105

Example 3 (frequencies): DIMACS format

(D /\?:] (\/Jlf':l xs,f)
CORAVSE /\]]%_:11 /\J]§2=f1+1 ("xs,ﬁ v ﬁxs,fz)
(3) V(si,5) € E. A (—vcsl’f v —lxmc)

RS Erika Abraham - 44/105

Example 3 (frequencies): DIMACS format

M AL (Vi x)
CORAVSE /\]]%_:11 /\J]§2=f1+1 ("xs,ﬁ v ﬁxs,fz)
(3) V(si,5) € E. A (—vcsl’f v —lxmc)

Assume that n? (n € N.) stations are arranged in a grid with the
coordinates (i,j), 1 <i,j <n,and

E = {(G),@+L,))|1<i<n-1A1<Lj<n}uU
(@), Gj+1)I1<i<nAl<Lj<n-1}.

RS Erika Abraham - 44/105

Example 3 (frequencies): DIMACS format

M AL (Vi x)
CORAVSE /\]]%_:11 /\J]§2=f1+1 ("xs,ﬁ v ﬁxs,fz)
(3) V(si,5) € E. A (—vcsl’f v —lxmc)

Assume that n? (n € N.) stations are arranged in a grid with the
coordinates (i,j), 1 <i,j <n,and

E = {((Gj),(+1,)|l <i<n-1Al<j<n}U
(@), Gj+1) |1 <i<nAl<j<n-1}.
Write a Python program that writes for an input n the DIMACS encoding

fork =1,...,ninto an external file, and check them (by manually calling z3
on them) to identify the minimal k necessary for a solution.

RS Erika Abraham - 44/105

Example 3: DIMACS

import argparse
import sys
try:
parser = argparse.ArgumentParser()
parser.add_argument ("n", help="number of stations", type=int)
args = parser.parse_args()
n = args.n

except:
e = sys.exc_info() [0]
print(e)

for k in range(n):
names = []
for i in range(n):
names_i = []
for j in range(k+1):
name = str(i*(k+1)+j+1)
names_i.append(name)
names.append (names_i)
clauses = ""
counter = 0
for i in range(n):
for j in range(k+1):
clauses += names[i][j] +
clauses += "0\n"
counter += 1
file = open("frequencies" + str(k+1) + ".dimacs","w")
file.write("p cnf " + str(n*(k+1)) + " " + str(counter) + "\n")
file.write(clauses)
file.close()

45/105

Solving propositional logic with SMT solvers

m SMT-LIB format:
https://microsoft.github.io/z3guide/docs/logic/propositional-logic

m Python interface:
https://ericpony.github.io/z3py-tutorial/guide-examples.htm

m Both:
https://cvc5.github.io/tutorials/beginners/

RS Erika Abraham - 46/105

SMT-LIB2 format

Boolean SMT-LIB example

(set-logic QF_UF)
(declare-const p Bool)
(assert (and p (not p)))
(check-sat)

BT Erika Abraham -

Example 3 (frequencies): SMT-LIB format

M AL (Vi x)
CORAVSE /\]]%_:11 /\J]§2=f1+1 ("xs,ﬁ v ﬁxs,fz)
(3) V(si,5) € E. A (—vcsl’f v —lxmc)

Assume that n? (n € N.) stations are arranged in a grid with the
coordinates (i,j), 1 <i,j <n, and

E = {(G),@+L,))|1<i<n-1A1<Lj<n}uU
(@), Gj+1)I1<i<nAl<Lj<n-1}.

RS Erika Abraham - 48/105

Example 3 (frequencies): SMT-LIB format

M AL (Vi x)
CORAVSE /\]]%_:11 /\J]§2=f1+1 ("xs,ﬁ v ﬁxs,fz)
(3) V(si,5) € E. A (—vcsl’f v —lxmc)

Assume that n? (n € N.) stations are arranged in a grid with the
coordinates (i,j), 1 <i,j <n,and

E = {(G),+L,))l1<i<n-1A1<j<njuU
{(G,),Gj+1) |1 <i<nAl<Lj<n-1}.
Write a Python program that writes for an input n the SMT-LIB2 encoding

fork =1,...,ninto an external file, and check them (by manually calling z3
on them) to identify the minimal k necessary for a solution.

RS Erika Abraham - 48/105

Example 3: SMT-LIB2

import argparse
import sys
try:
parser = argparse.ArgumentParser()
parser.add_argument ("n", help="number of stations", type=int)
args = parser.parse_args()
n = args.n

except:
e = sys.exc_info() [0]
print(e)

names = []

for i in range(n):
names_i = []
for j in range(n):
name = "a_" + str(i+l) +
names_i.append(name)
names. append (names_i)
for k in range(n):
file = open("frequencies" + str(k+l) +
file.write("(set-logic QF_UF)\n")
for i in range(n):
for j in range(k+1):
file.write("(declare-const
for i in range(n):
file.write("(assert (or")
for j in range(k+1):
file.write(" " + names[i][j])
file.write("))\n")
file.write(" (check-sat)\n")
file.write("(exit)\n")
file.close()

+ str(j+1);

smt2", "W

+ names[i][j] + " Bool)\n")

49/105

Solving propositional logic with SMT solvers

m SMT-LIB format:
https://microsoft.github.io/z3guide/docs/logic/propositional-logic

m Python interface:
https://ericpony.github.io/z3py-tutorial/guide-examples.htm

m Both:
https://cvc5.github.io/tutorials/beginners/

RS Erika Abraham - 50/105

Example 3: Python API

(M ALy (Vi x)

n k—1 k
@ At A Nmpar (5551 V ~%p)
(3) V(s1,52) € E. Afy (~¥ys V ~Xerg)

Assume that n? (n € Ns) stations are arranged in a grid with the
coordinates (i,j), 1 <i,j <n,and

E = {((i,),G+L,))l1<i<n-1Al1<j<nlu
(G, Gj+I)IT<i<nAl<j<n-1}.

RS Erika Abraham - 51/105

Example 3: Python API

(M ALy (Vi x)
(2) /\?:] /\;%;11 /\}]f'z:flﬂ (_‘xs,fl \ ﬂxs,fz)
(3) V(s1,52) € E. Nf_y (=, 1 V =X)

Assume that n? (n € Ns) stations are arranged in a grid with the
coordinates (i,j), 1 <i,j <n,and

E = {((i,),G+L,))l1<i<n-1Al1<j<nlu
(G, Gj+I)IT<i<nAl<j<n-1}.

Write a Python program that uses for an input n the Python API of z3 to
find the minimal £ necessary for a solution.

RS Erika Abraham - 51/105

Example 3: Python API

from z3 import *
import argparse
import sys
try:
parser = argparse.ArgumentParser()
parser.add_argument("n", help="number of stations", type=int)
args = parser.parse_args()
n = args.n

except:
e = sys.exc_info() [0]
print(e)

names = []

for i in range(n):
names_i = []
for j in range(n):
name = "a_" + str(i+l) +
names_i.append(Bool (name))
names. append(names_i)

+ str(j+1);

s = Solver()
for k in range(n):
s.push(Q)

for i in range(n):
params = []
for j in range(k+1):

params. append (names[i][j1)

s.add(Or(params))

print(s)

print(s.check())

s.pop()

52/105

@ SMT solving
m Approaches

m SMT-RAT

m SMT-LIB

m SMT solvers as integrated engines
m Future challenges

m Hands-on

RS Erika Abraham - 53/105

Three SMT solving approaches

theory
Eager SMT solving
Boolean

Boolean
Lazy SMT solving
theory

Model-constructing
satisfiability calculus H

(MCSAT)

RS Erika Abraham -

Three SMT solving approaches

theory
Eager SMT solving
Boolean

Boolean
Lazy SMT solving
theory

Model-constructing
satisfiability calculus H

(MCSAT)

RS Erika Abraham -

Eager example [Bryant and Velev, 2000]

(,DE = X1 =XxX2 A X2 =x3 A X| X3

RS Erika Abraham - 56/105

Eager example [Bryant and Velev, 2000]

Q- = X1 =x2 N Xp=X3 AN X| #X3

rop ._
¢p p .—

oF is satisfiable iff PP s satisfiable

RS Erika Abraham - 56/105

Eager example [Bryant and Velev, 2000]

E = X1 =Xx2 AN Xp=x3 N X1 #X3

AN
|

el AN e A —es A

<pprop —
Boolean abstraction

oF is satisfiable iff PP s satisfiable

56 /105

RS Erika Abraham -

Eager example [Bryant and Velev, 2000]

(,DE = X1 =XxX2 A X2 =x3 A X| X3

er. AN oex A ez A ((erAep) o es)

<pprop —
Boolean abstraction transitivity constraint

oF is satisfiable iff PP s satisfiable

56 /105

BT Erika Abraham -

Eager example [Bryant and Velev, 2000]

(,DE = X1 =XxX2 A X2 =x3 A X| X3

er. AN oex A ez A ((erAep) o es)

<pprop —
Boolean abstraction transitivity constraint

oF is satisfiable iff PP s satisfiable

Similar approaches are available for uninterpreted functions, bit-vector
arithmetic (“bit-blasting”), floating-point arithmetic and others.

56 /105

BT Erika Abraham -

Three SMT solving approaches

theory
Eager SMT solving
Boolean

Boolean
Lazy SMT solving
theory

Model-constructing
satisfiability calculus H

(MCSAT)

RS Erika Abraham -

Three SMT solving approaches

theory
Eager SMT solving
Boolean

Boolean
Lazy SMT solving
theory

Model-constructing
satisfiability calculus H

(MCSAT)

RS Erika Abraham -

Full lazy SMT solving

Boolean abstraction

unsatisfiable

o SAT-solver
satisfiable

[(In)equation set] [Explanation]

unsatisfiable

Theory solver AT
[Y | satisfiable S

RS Erika Abraham -

Boolean abstraction

(m OVpa=0Vp3=0)Ap; +p2+p3 =100
—— =

u1 a a3 as
P1=25Vp2z25Ap3=10Ap; +2py +5p3 <180 A
———— N — ——

as ag ay as

3p1 +2p> + p3 <300

ag

RS Erika Abraham - 59/105

Boolean abstraction

(m OVpa=0Vp3=0)Ap; +p2+p3 =100
—— =

u1 a a3 as
P1=25Vp2z25Ap3=10Ap; +2py +5p3 <180 A
———— N — ——

as ag ay as

3p1 +2p> + p3 <300

ag

(@ VayVaz)Nag A(as V ag) Aaj A\ ag A ag

RS Erika Abraham - 59/105

Full lazy SMT solving

Boolean abstraction

unsatisfiable

o SAT-solver
satisfiable

[(In)equation set] [Explanation]

unsatisfiable

Theory solver AT
[Y | satisfiable S

RS Erika Abraham -

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO :

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DI0:ay4: 1

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:aq:1,a7:1

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:aq:1,a7:1,ag:1

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:as:1,a7:1,ag:1,a9:1

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:as:1,a7:1,ag:1,a9:1
DL1 :

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:as:1,a7:1,ag:1,a9:1
DL1:a;:0

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:as:1,a7:1,ag:1,a9:1
DL1:a;:0
DIL2 :

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:as:1,a7:1,ag:1,a9:1
DL1:a;:0
DI2:ay:0

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:as:1,a7:1,ag:1,a9:1
DL1:a;:0
DI2 :a; :0,a3:1

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:as:1,a7:1,ag:1,a9:1
DL1:a;:0

DI2 :a; :0,a3:1

DL3 :

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:as:1,a7:1,ag:1,a9:1
DL1:a;:0

DI2 :a; :0,a3:1
DL3:a5:0

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:as:1,a7:1,ag:1,a9:1
DL1:a;:0

DI2 :a; :0,a3:1

DL3 :as5:0,a¢: 1

RS Erika Abraham - 61/105

SAT solving

(arVayVaz)Nag A(asV ag) Nay Aag A ag

Assume a fixed variable order: aip,...,ag
Assignment to decision variables: false

DIO:as:1,a7:1,ag:1,a9:1
DL1:a;:0

DI2 :a; :0,a3:1

DL3 :as5:0,a¢: 1

Solution found for the Boolean abstraction.

RS Erika Abraham - 61/105

Full lazy SMT solving

Boolean abstraction

unsatisfiable

o SAT-solver
satisfiable

[(In)equation set] [Explanation]

unsatisfiable

Theory solver AT
[Y | satisfiable S

RS Erika Abraham -

Theory solving

DIO:as:1,a7:1,a3:1,a9:1 DLI1:a;:0
DI2 :a>:0,a3:1 DL3 :as5:0,a¢ : 1

RS Erika Abraham - 63/105

Theory solving

DIO:as:1,a7:1,a3:1,a9:1 DLI1:a;:0
DI2 :a>:0,a3:1 DL3 :a5:0,a¢ : 1

True theory constraints: a4, a7, as, ag, as, aeg

RS Erika Abraham - 63/105

Theory solving

DIO:as:1,a7:1,a3:1,a9:1 DLI1:a;:0
DI2 :a>:0,a3:1 DL3 :as5:0,a¢ : 1

True theory constraints: a4, a7, as, ag, as, aeg

(P1=0Vpr=0Vp3=0)Ap;+p2+p3=100A
—— =

ai ap as aq
(p1 >5Vpr>5) Aps > 10Ap; +2ps + 5p3 < 180 A
~——— —— —————
as ae ar ag

3p1+2p2 + p3 <300

ag

RS Erika Abraham - 63/105

Theory solving

DIO:as:1,a7:1,a3:1,a9:1 DLI1:a;:0
DI2 :a>:0,a3:1 DL3 :as5:0,a¢ : 1

True theory constraints: a4, a7, as, ag, as, aeg

(P1=0Vpr=0Vp3=0)Ap;+p2+p3=100A
—— =

ai ap as aq
(p1 >5Vpr>5) Aps > 10Ap; +2ps + 5p3 < 180 A
~——— —— —————
as ae ar ag

3p1+2p2 + p3 <300

ag

Encoding:
ays pr+p2+p3 =100 a7 :p3 =10 ag pp +2py + 5p3 < 180
ag 3p1+2p2+p3 <300 a3 p3=0 agpry=5

RS Erika Abraham - 63/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +pa2 +p3 > 100

a7 :p3 = 10

ag p1+2py +5p3 < 180

ag 3p1 + 2p2 + p3 <300

as p3 = 0

ae P2 2 5

=

RS Erika Abraham - 64/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +pa2 +p3 > 100

a7 :p3 = 10

ag p1+2py +5p3 < 180

ag 3p1 + 2p2 + p3 <300

=

as p3 = 0
ae :p2 2 5
No.

RS Erika Abraham - 64/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +pa2 +p3 > 100

a7 :p3 = 10

ag p1+2py +5p3 < 180

ag 3p1 + 2p2 + p3 <300

as p3 = 0

ae P2 2 5

=

No.
Reason:

RS Erika Abraham - 64/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +pa2 +p3 > 100

a7 :p3 = 10

ag p1+2py +5p3 < 180

ag 3p1 + 2p2 + p3 <300

=

as p3 = 0
ae :p2 2 5
No.

Reason: p3 = 0 A p3 > 10 are conflicting.
N——— N———

as ar

RS Erika Abraham - 64/105

Full lazy SMT solving

Boolean abstraction

unsatisfiable

o SAT-solver
satisfiable

[(In)equation set] [Explanation]

unsatisfiable

Theory solver AT
[Y | satisfiable S

RS Erika Abraham -

SAT solving

Add clause (—a3 V —a7).
(apVayVaz)ANag AN(as V ag) Naj ANag Aag A (—az V —aq)

DIO:a4:1,a7:1,ag:1,a9:1
DL1:a;:0

DIL2 :a; :0,a3:1
DL3:as5:0,a¢: 1

RS Erika Abraham - 66/105

SAT solving

Add clause (—a3 V —a7).
(apVayVaz)ANag AN(as V ag) Naj ANag Aag A (—az V —aq)

DIO:a4:1,a7:1,ag:1,a9:1
DL1:a;:0

DIL2 :a; :0,a3:1
DL3:as5:0,a¢: 1

Conflict resolution is simple, since the new clause is already an asserting
one.

RS Erika Abraham - 66/105

SAT solving

(arVayVaz)ANag A(asV ag) ANaj ANag Aag A (—az V —aq)

DIO:a4:1,a7:1,ag:1,a9:1

RS Erika Abraham - 67/105

SAT solving

(arVayVaz)ANag A(asV ag) ANaj ANag Aag A (—az V —aq)

DIO:a4:1,a7:1,a3:1,a9:1,a3:0

RS Erika Abraham - 67/105

SAT solving

(arVayVaz)ANag A(asV ag) ANaj ANag Aag A (—az V —aq)

DIO:a4:1,a7:1,a3:1,a9:1,a3:0
DL1 :

RS Erika Abraham - 67/105

SAT solving

(arVayVaz)ANag A(asV ag) ANaj ANag Aag A (—az V —aq)

DIO:a4:1,a7:1,a3:1,a9:1,a3:0
DL1:a;:0

RS Erika Abraham - 67/105

SAT solving

(arVayVaz)ANag A(asV ag) ANaj ANag Aag A (—az V —aq)

DIO:a4:1,a7:1,a3:1,a9:1,a3:0
DL1:a; :0,a;:1

RS Erika Abraham - 67/105

SAT solving

(arVayVaz)ANag A(asV ag) ANaj ANag Aag A (—az V —aq)

DIO:a4:1,a7:1,a3:1,a9:1,a3:0
DL1:a; :0,a;:1
DL2 :

RS Erika Abraham -

67 /105

SAT solving

(arVayVaz)ANag A(asV ag) ANaj ANag Aag A (—az V —aq)
DIO:a4:1,a7:1,a3:1,a9:1,a3:0

DL1:a; :0,a;:1
DIL2 :a5:0

67 /105

RS Erika Abraham -

SAT solving

(arVayVaz)ANag A(asV ag) ANaj ANag Aag A (—az V —aq)
DIO:a4:1,a7:1,a3:1,a9:1,a3:0

DL1:a; :0,a;:1
DIL2 :as5:0,a6: 1

67 /105

RS Erika Abraham -

SAT solving

(arVayVaz)ANag A(asV ag) ANaj ANag Aag A (—az V —aq)

DIO:a4:1,a7:1,a3:1,a9:1,a3:0
DL1:a; :0,a;:1
DIL2 :as5:0,a6: 1

Solution found for the Boolean abstraction.

67 /105

RS Erika Abraham -

Full lazy SMT solving

Boolean abstraction

unsatisfiable

o SAT-solver
satisfiable

[(In)equation set] [Explanation]

unsatisfiable

Theory solver AT
[Y | satisfiable S

RS Erika Abraham -

Theory solving

DIO:ay:1,a7:1,ag:1,a9:1,a3:0 DLI1:a;:0,a;:1
DL2:a5 :0,a6 01

RS Erika Abraham - 69/105

Theory solving

DIO:ay:1,a7:1,ag:1,a9:1,a3:0 DLI1:a;:0,a;:1
DL2:a5 :O,a6 01

True theory constraints: ay, a7, as, ag, az, aes

RS Erika Abraham - 69/105

Theory solving

DIO:ay:1,a7:1,ag:1,a9:1,a3:0 DLI1:a;:0,a;:1
DL2:a5 :0,a6 01

True theory constraints: ay, a7, as, ag, az, aes

(P1=0Vpr=0Vp3=0)Ap;+pr+p3=100A
—— Y =

ay an as aq
(p1 >5Vpr>5) Aps > 10Ap; +2ps + 5p3 < 180 A
~——— —— —————
as ae ar ag

3p1 +2p> + p3 < 300 A(=a3 V —az)

ag

RS Erika Abraham - 69/105

Theory solving

DIO:ay:1,a7:1,ag:1,a9:1,a3:0 DLI1:a;:0,a;:1
DL2:a5 :0,a6 01

True theory constraints: ay, a7, as, ag, az, aes

(P1=0Vpr=0Vp3=0)Ap;+pr+p3=100A
—— Y =

ay an as aq
(p1 >5Vpr>5) Aps > 10Ap; +2ps + 5p3 < 180 A
~——— —— —————
as ae ar ag

3p1 +2p> + p3 < 300 A(=a3 V —az)

ag

Encoding:
ays pr+p2+p3 =100 a7 :p3 =10 ag pp +2py + 5p3 < 180
ag 3p1+2p2+p3 <300 a» pp=0 agpr=5

RS Erika Abraham - 69/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +p2 +p3 > 100

a7 p3 =10

ag p1+2py +5p3 < 180

ag :3p1 + 2p2 + p3 <300

ay pp = 0

ag p2 =95

=

RS Erika Abraham - 70/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +p2 +p3 > 100

a7 p3 =10

ag p1+2py +5p3 < 180

ag :3p1 + 2p2 + p3 <300

=

ay pp = 0
ag p2 =95
No.

RS Erika Abraham - 70/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +p2 +p3 > 100

a7 p3 =10

ag p1+2py +5p3 < 180

ag :3p1 + 2p2 + p3 <300

ay pp = 0

ag p2 =95

=

No.
Reason:

RS Erika Abraham - 70/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +p2 +p3 > 100

a7 p3 =10

ag p1+2py +5p3 < 180

ag 3p1 +2p2 + p3 <300

=

ay pp = 0
ag p2 =95
No.

Reason: p, = 0 Ap, > 5 are conflicting.
S~—— =

az ae

RS Erika Abraham - 70/105

Full lazy SMT solving

Boolean abstraction

unsatisfiable

o SAT-solver
satisfiable

[(In)equation set] [Explanation]

unsatisfiable

Theory solver AT
[Y | satisfiable S

RS Erika Abraham -

SAT solving

Add clause (—ay V —ag).

(arVayVaz)ANag A(as V ag) ANaj Nag Aag A (—az V —az) A
(maz V —ae)
DIO:a4:1,a7:1,a3:1,a9:1,a3:0

DL1:a; :0,a;:1
DIL2 :as5:0,a¢: 1

BT Erika Abraham -

72/105

SAT solving

Add clause (—ay V —ag).

(arVayVaz)ANag A(as V ag) ANaj Nag Aag A (—az V —az) A
(maz V —ae)
DIO:a4:1,a7:1,a3:1,a9:1,a3:0

DL1:a; :0,a;:1
DIL2 :as5:0,a¢: 1

Conflict resolution is simple, since the new clause is already an asserting
one.

BT Erika Abraham -

72/105

SAT solving

(arVayVaz)Nag A(as NV ag) Nay Aag Aag A (maz V —az) A

(maz V —ag)

DIO:a4:1,a7:1,a3:1,a9:1,a3:0
DL1:a; :0,a;:1

RS Erika Abraham - 73/105

SAT solving

(arVayVaz)Nag A(as NV ag) Nay Aag Aag A (maz V —az) A

(maz V —ag)

DIO:a4:1,a7:1,a3:1,a9:1,a3:0
DL1:a;:0,a2:1,a6:0

RS Erika Abraham - 73/105

SAT solving

(arVayVaz)Nag A(as NV ag) Nay Aag Aag A (maz V —az) A

(maz V —ag)

DIO:a4:1,a7:1,a3:1,a9:1,a3:0
DL1:a; :0,a2:1,a6:0,a5:1

RS Erika Abraham - 73/105

SAT solving

(arVayVaz)Nag A(as NV ag) Nay Aag Aag A (maz V —az) A

(maz V —ag)

DIO:a4:1,a7:1,a3:1,a9:1,a3:0
DL1:a; :0,a2:1,a6:0,a5:1

Solution found for the Boolean abstraction.

RS Erika Abraham - 73/105

Full lazy SMT solving

Boolean abstraction

unsatisfiable

o SAT-solver
satisfiable

[(In)equation set] [Explanation]

unsatisfiable

Theory solver AT
[Y | satisfiable S

RS Erika Abraham -

Theory solving

DIO:as:1,a7:1,ag:1,a9:1,a3:0 DLI1:a;:0,a;:1,a6:0,as:1

RS Erika Abraham - 75/105

Theory solving

DIO:aq:1,a7:1,a3:1,a9:1,a3:0 DLl :ay:0,ap:1,a¢:0,as:1

True theory constraints: a4, a7, as, ag, ay, as

RS Erika Abraham - 75/105

Theory solving

DIO:as:1,a7:1,ag:1,a9:1,a3:0 DLI1:a;:0,a;:1,a6:0,as:1
True theory constraints: a4, a7, as, ag, ay, as

(Pl 0Vpr=0Vp3=0)Api+ps+p3=100A
— =

al a as n
P1=25Vpr=25)Ap3 > 10Ap; +2pr+5p3 < 180 A
—— —— ——

as ae ar as

3p1 4+ 2p2 + p3 <300 A(=as Vv —ag) A (max V —ag)

ag

RS Erika Abraham - 75/105

Theory solving

DIO:as:1,a7:1,ag:1,a9:1,a3:0 DLI1:a;:0,a;:1,a6:0,as:1
True theory constraints: a4, a7, as, ag, ay, as

(Pl 0Vpr=0Vp3=0)Api+ps+p3=100A
— =

al a as n
P1=25Vpr=25)Ap3 > 10Ap; +2pr+5p3 < 180 A
—— —— ——

as ae ar as

3p1 4+ 2p2 + p3 <300 A(=as Vv —ag) A (max V —ag)

ag

Encoding:
as :p1 +p2 +p3 =100 a7 :p3 =210 ag :p1 +2pr + 5p3 < 180
ag 3p1+2p2+p3 <300 ar pp=0 as:p =5

RS Erika Abraham - 75/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +p2 +p3 > 100

ar :p3 =10

ag p1+2py +5p3 < 180

ag 3p1 +2p2 + p3 <300

ay pr = 0

as :pr =95

RS Erika Abraham - 76/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +p2 +p3 > 100

ar :p3 =10

ag p1+2py +5p3 < 180

ag 3p1 +2p2 + p3 <300

ay pr = 0
as :pr =95
Yes.

RS Erika Abraham - 76/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +p2 +p3 > 100

ar :p3 =10

ag p1+2py +5p3 < 180

ag 3p1 +2p2 + p3 <300

ay pr = 0

as :pr =95

Yes. E.g.,

RS Erika Abraham - 76/105

Theory solving

Is the conjunction of the following constraints satisfiable?
as :p1 +p2 +p3 > 100

ar :p3 =10

ag p1+2py +5p3 < 180

ag 3p1 +2p2 + p3 <300

ay pr = 0

as :pr =95

Yes. E.g., p1 =90, p» =0, p3 = 10 is a solution.

RS Erika Abraham - 76/105

Full lazy SMT solving

Boolean abstraction

unsatisfiable

o SAT-solver
satisfiable

[(In)equation set] [Explanation]

unsatisfiable

Theory solver AT
[Y | satisfiable S

RS Erika Abraham -

Less lazy SMT solving

[input formula in CNF]

Boolean abstraction

solution or > SAT or
N']sat UNSAT

[(partial) SAT or]

SAT solver

(partial) s

[(inequation set unsat + explanation

\A‘ theory solver(s)]/

RS Erika Abraham - 78/105

Requirements on the theory solver

Incrementality: In less lazy solving we extend the set of constraints.
The solver should make use of the previous satisfiability check for the
check of the extended set.

(Preferably minimal) infeasible subsets: Compute a reason for
unsatisfaction

Backtracking: The theory solver should be able to remove constraints
in inverse chronological order.

RS Erika Abraham - 79/105

Three SMT solving approaches

theory
Eager SMT solving
Boolean

Boolean
Lazy SMT solving

theory
Model-constructing ¢
satisfiability calculus H
(MCSAT)

RS Erika Abraham -

Three SMT solving approaches

theory
Eager SMT solving
Boolean

Boolean
Lazy SMT solving

theory
Model-constructing ¢
satisfiability calculus H
(MCSAT)

RS Erika Abraham -

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

RS Erika Abraham - 81/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(avbvc)yA(@aV bV —c)

RS Erika Abraham - 81/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(avbvc)yA(@aV bV —c)

B-propagate -

RS Erika Abraham - 81/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(avbvc)yA(aV bV —c)

B-propagate -
B-decision a = false

RS Erika Abraham - 81/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(avbvc)yA(aV bV —c)

B-propagate -
B-decision a = false
B-propagate -

RS Erika Abraham - 81/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(avbvc)yA(aV bV —c)

B-propagate -

B-decision a = false
B-propagate -
B-decision b = false

RS Erika Abraham - 81/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(avbvc)yA(@aV bV —c)

B-propagate -

B-decision a = false
B-propagate -
B-decision b = false
B-propagate c=tue 7

RS Erika Abraham - 81/105

The DPLL+CDCL idea [pavis et al., '60/61] [Marques-Silva et al., '96]

Exploration: ~ B-decision
Look-ahead: B-propagation

Proof system: B-conflict resolution

(avbvc)yA(@aV bV —c)

B-propagate -

B-decision a = false
B-propagate -
B-decision b = false
B-propagate c=tue 7

B-conflict resolution (a V b)

RS Erika Abraham - 81/105

The MCSAT idea [de Moura, Jovanovié, VMCAI'13]

Exploration: ~ B-decision T-decision
Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

(avbvc)yA(@aV bV —c)

B-propagate -

B-decision a = false
B-propagate -
B-decision b = false
B-propagate c=tue 7

B-conflict resolution (a V b)

RS Erika Abraham - 81/105

The MCSAT idea [de Moura, Jovanovié, VMCAI'13]

Exploration: ~ B-decision T-decision
Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

(avbvc)yA(@aV bV —c) ox oyt <0 ...

B-propagate -

B-decision a = false
B-propagate -
B-decision b = false
B-propagate c=tue 7

B-conflict resolution (a V b)

RS Erika Abraham - 81/105

The MCSAT idea [de Moura, Jovanovié, VMCAI'13]

Exploration: ~ B-decision T-decision
Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

(avbvc)yA(@aV bV —c) ox oyt <0 ...
B-propagate - B-propagate -
B-decision a = false
B-propagate -

B-decision b = false
B-propagate c=tue 7

B-conflict resolution (a V b)

RS Erika Abraham - 81/105

The MCSAT idea [de Moura, Jovanovié, VMCAI'13]

Exploration: ~ B-decision T-decision
Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

(avbVveyA(aV bV —c) o x-y?<0 ...
B-propagate - B-propagate -
B-decision a = false B-decision X y2 <0
B-propagate -

B-decision b = false
B-propagate c=tue 7

B-conflict resolution (a V b)

RS Erika Abraham - 81/105

The MCSAT idea [de Moura, Jovanovié, VMCAI'13]

Exploration: B-decision T-decision
Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

(avbVveyA(aV bV —c) o x-y?<0 ...
B-propagate - B-propagate -
B-decision a = false B-decision X y2 <0
B-propagate - T-propagate X € (—00,00)
B-decision b = false
B-propagate c=tue 7

B-conflict resolution (a V b)

RS Erika Abraham - 81/105

The MCSAT idea [de Moura, Jovanovié, VMCAI'13]

Exploration: B-decision T-decision
Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

(avbVveyA(aV bV —c) o x-y?<0 ...
B-propagate - B-propagate -
B-decision a = false B-decision X y2 <0
B-propagate - T-propagate X € (—00,00)
B-decision b = false T-decision x=1
B-propagate c=true 7

B-conflict resolution (a V b)

RS Erika Abraham - 81/105

The MCSAT idea [de Moura, Jovanovié, VMCAI'13]

Exploration: B-decision T-decision
Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

(avbVveyA(aV bV —c) o x-y?<0 ...
B-propagate - B-propagate -
B-decision a = false B-decision X y2 <0
B-propagate - T-propagate X € (—00,00)
B-decision b = false T-decision x=1
B-propagate c=true 7 T-propagate ye 7

B-conflict resolution (a V b)

RS Erika Abraham - 81/105

The MCSAT idea [de Moura, Jovanovié, VMCAI'13]

Exploration: B-decision T-decision
Look-ahead: B-propagation T-propagation

Proof system: B-conflict resolution T-conflict resolution

(avbVveyA(aV bV —c) o x-y?<0 ...
B-propagate - B-propagate -
B-decision a = false B-decision X y2 <0
B-propagate - T-propagate X € (—00,00)
B-decision b = false T-decision x=1
B-propagate c=true 7 T-propagate ye 7
B-conflict resolution (a V b) T-conflict resolution (x - y* <0 — x < 0)

RS Erika Abraham - 81/105

@ SMT solving
m Approaches

m SMT-RAT

m SMT-LIB

m SMT solvers as integrated engines
m Future challenges

m Hands-on

RS Erika Abraham - 82/105

Our SMT-RAT library [SAT'12, SAT’15]

SMT solver
Strategic composition of SMT-RAT modules

o

SMT real-algebraic toolbox
collection of solver modules

CArL
real-arithmetic
computations

gmp, Eigen3, boost

m MIT licensed source code: github.com/smtrat/smtrat
m Documentation: smtrat.github.io

RS Erika Abraham - 83/105

github.com/smtrat/smtrat
smtrat.github.io

Solver modules in SMT-RAT [SAT'12, SAT'15]

\/CArL library: basic arithmetic datatypes and computations [Sapientia’18, NFM'11, CAI'11]

Basic modules

[SAT solver] [CNF converter] [Preprocessing/simplifying modules]

P

Non-algebraic decision procedures

[Equalities and uninterpreted functions][Bit-vectors] [Bit—blasting]

[Interval constraint propagation] [Pseudo—BooIean formulas]

U

Algebraic decision procedures | GauB+Fourier-Motzkin, FMplex [GandALF23] |

Grdbner bases [CAI'13]] [MCSAT (FM,VS,CAD) [2xSC*'19]] [Simplex [ISSAC'21]

Cylindrical algebraic decomposition [SC*21, CADE-24,JSC’'19,SC*17,3 PhDs]

Virtual substitution [FCT'11, SC*'17, 1 PhD]] [Subtropical satisfiability [NFM23]

)
)
J
)

Generalized branch-and-bound [CASC'16]] [Cube tests] [Linearization]

[Cylindrical algebraic covering [SMT'23, JLAMP’21, SYNASC’21, PhD Kremer]

BT Erika Abraham -

84/105

Strategic composition of solver modules in SMT-RAT

Manager
) Condition Condition Condition
<-|-) N N h
Module| |Module| |Module| |Module

RS Erika Abraham - 85/105

@ SMT solving
m Approaches

m SMT-RAT

m SMT-LIB

m SMT solvers as integrated engines
m Future challenges

m Hands-on

RS Erika Abraham - 86/105

The Satisfiability Modulo Theories Library

SMT-LIB The Satisfiability Modulo Theories Library — Mozilla Firefox
Bookmarks
0 @

R © 4 smlib.cs.uiowa.edu/index.sheml % @ L IND e 0@

22 Most Visited @ Getting Started £5Other Bookmarks

About News. Standard Benchmarks Software Credits

THE SATISFIABILITY MODULO THEORIES LIBRARY

SMT-LIB is an international initiative aimed at facilitating research and development in Satisfiability Modulo Theories Home
(SMT). Since its inception in 2003, the initiative has pursued these aims by focusing on the following concrete goals. About
News

« Provide standard rigorous descriptions of background theories used in SMT systems. .

« Develop and promote common input and output languages for SMT solvers,

« Connect developers, researchers and users of SMT, and develop a community around it tanguage

« Establish and make available to the research community a large library of benchmarks for SMT solvers. Theeres

« Collect and promote software tools useful to the SMT community. Logics

Examples
“This website provides access to the following main artfacts of the initative. Senchmarks

« Documents describing the SMT-LIB input/output language for SMT solvers and its semantics; twar

+ Specifications of background thearies and logics; Sotvers

« Alarge library of input problems, or benchmarks, witten in the SMT-LIB language. Utiies

» Links to SMT solvers and related tools and utilities. Contact
Related

Credits

The Satisfiability Modulo Theories Library

SMT-LIB The Satisfiability Modulo Theories Library — Mozilla Firefox

@

R © 4 smlib.cs.uiowa.edu/language shiml @ x| ©n L IND e 0@

42 Most Visited @ Getting Started £5Other Bookmarks

Home Credits

THE SATISFIABILITY MODULO THEORIES LIBRARY

Language
About
‘The SMT-LIB Standard: Version 2.6, by Clark Barrett, Pascal Fontaine, and Cesare Tineli Newe
atest official release of Version 2.6 of the SMT-LIB standard. [pof | bib]
Previous releases: 2021-04-02; 2017-07-18 ’ [

‘The SMT-LIB Standard: Version 2.5, by Clark Barrett, Pascal Fontaine, and Cesare Tinell B
Latest offcial release of Version 2.5 of the SMT-LIB standard. { paf | bib] Lo
Previous releases: 2015-05-28

‘The SMT-LIB v2 Language and Tools: A Tutorial, by David R. Cok
Atutorial on Version 2.0 of the language and on a number of SMT-LIB tools developed by the author. [paf]

Examples
Benchmarks

Solvers
Previous Versions Uiiiies:
Gontact
‘The following earlier versions of the standard are subsumed by the current one and so are deprecated. They are listed
here only for historical reasons. Related
Credits

‘The SMT-LIB Standard: Version 2.0, by Clark Barreft, Aaron Stump, and Cesare Tinell
Last offcial release of Version 2.0 of the ST-LIB standard (9 Sep 9 2012).
[pat | bib]
Previous releases (Change log): Version 2.0 21-12-10; 28-06;

0;30-03-10,

‘The SMT-LIB Standard: Version 1.2, by Silvio Ranise and Cesare Tinell

SMT-LIB theories

Source: http://smtlib.cs.uiowa.edu/logics.shtml

RS Erika Abraham -

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free equality logic with uninterpreted functions
(a=cAb=d) — f(a,b) =f(c,d)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

RS Erika Abraham - 89/105

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free bit-vector arithmetic
(alb) < (a&b)

Source: http://smtlib.cs.uiowa.edu/logics.shtml

RS Erika Abraham - 89/105

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Quantifier-free array theory
i =] — read(write(a,i,v),j) = v

Source: http://smtlib.cs.uiowa.edu/logics.shtml

RS Erika Abraham -

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

x—y~0, ~€{<’Sa=’2’>}

Source: http://smtlib.cs.uiowa.edu/logics.shtml

RS Erika Abraham - 89/105

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

(Quantifier-free) real/integer linear arithmetic
3x+T7y=28

Source: http://smtlib.cs.uiowa.edu/logics.shtml

RS Erika Abraham - 89/105

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

(Quantifier-free) real/integer non-linear arithmetic
P4+2y+y* >0

Source: http://smtlib.cs.uiowa.edu/logics.shtml

RS Erika Abraham - 89/105

http://smtlib.cs.uiowa.edu/logics.shtml

SMT-LIB theories

Combined theories
2f(x) + 5y >0

Source: http://smtlib.cs.uiowa.edu/logics.shtml

RS Erika Abraham -

http://smtlib.cs.uiowa.edu/logics.shtml

@ SMT solving
m Approaches

m SMT-RAT

m SMT-LIB

m SMT solvers as integrated engines
m Future challenges

m Hands-on

RS Erika Abraham - 90/105

Embedding SAT/SMT solvers

Environment

|

Software

engu Solution

pabim) poven ST
roblem P solver

specification

RS Erika Abraham - 91/105

Embedding SAT/SMT solvers

Environment

|

Software

engine Solution

T T ST
roblem P solver

‘ specification

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

RS Erika Abraham - 91/105

Embedding SAT/SMT solvers

Environment

|

Software

engine Solution

Logical SAT/SMT
Pt} probler
solver

‘ specification

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

standard input syntax — free solver choice

RS Erika Abraham - 91/105

Embedding SAT/SMT solvers

Environment

|

Software

engine Solution

Probl s ch())gtJ)ll(;ari AL
roblem P solver

specification

Encoding: SAT/SMT-LIB standard
elaborate encoding is extremely important!

standard input syntax — free solver choice

Next: some applications of SMT solvers

RS Erika Abraham - 91/105

1. Rate adaption in hybrid Petri nets

15) 4 13 4

RS Erika Abraham - 92/105

1. Rate adaption in hybrid Petri nets

—4 13 —4
2: 50% by p, 2:50% by p,

e 4

RS Erika Abraham - 92/105

1. Rate adaption in hybrid Petri nets

HhHe— 1

—4— e 4
2: 50% by p, 2:50% by p,

e 4

RS Erika Abraham - 92/105

1. Rate adaption in hybrid Petri nets

HhHe— 1

—4— e 4
2: 50% by p, e]
1: 25% by ps

e 4

RS Erika Abraham - 92/105

1. Rate adaption in hybrid Petri nets

HhHe— 1

—4— e 4
2 50% by 2:50% by
3: 75% by p; 1: 25% by ps
8

e 4

RS Erika Abraham - 92/105

1. SMT encoding of rate adaption fixedpoint

1) [A 0 < factor, < 1] A [A 0 < factor, < l]/\
pEP teT,

2) [A\ ((owner; = source(t) A owner; € Pempyy) V (owner, = target(t) A owner; € Pfu[[))]/\
te’,

3) [A iny, = Gieingpnr, factor, - nominal_rate(r)) + (X ein)nr,, Nominal_rate(n))A
PEP ‘

out, = (Zteom(p)mn factor, - nominal_rate(t)) + (Z,gom(,,)mr nominal_rate(t))]/\

“) [A ((factor,, =1v \V owner, =p)A
PEPempty teOut(p)

A (owner; = p — factor, = factor,)A
teOut(p)

(owner; # p — factor, < factor,))A
in, > out, A (factor, <1 — in, = out)))]/\

5) [A ((factor]7 =1v \ owner, =p)A

PEP teln(p)

(A (owner, = p — factor, = factory)A
teln(p)

(owner; # p — factor, < factor,))A

in, < out, A (factor, <1 — in, = out,))]

RS Erika Abraham - 93/105

2. Reachability analysis for hybrid systems with HyPro

algorithms
c
28 Box g
SE HPolytope ~ |------- E A
I 5 = i
® VPolytope b 0 E:jllt;zizbllny
1 ©
=] 8 PPL-Polytope | ----- s
E| 5/ 8
el B Zonotope becegonc §
c| e |
= - VAALY
@ SupportPunction [GeometricObject [T
(8] -
§ S |Orthogona| ZCEE | <Interface>
2 |Tay|or model |
=]
—
(z/ptimizer |\,\ Cogoer] |l
= -.s
[glpk |[sMT-RAT |[23 |[SoPlex] Plotter

Source: E. Abraham, X. Chen, S. Sankaranarayanan, S. Schupp. PhD Chen, PhD Schupp,
Information and Computation’22, IRI'18, SEFM’18, TACAS’18, NFM'17, QAPL17, ARCH’15,
CyPhy’15, NFM’'15, FMCAD’14, CAV’13, FTSCS’13, NOLCOS’'13, RTSS'12, EUROCAST'11, RP’11.

RS Erika Abraham - 94 /105

3. Planning with Optimization Modulo Theories

1000 @ mee® o
.
800 x *
.
=1 < o
; = %x: .
600 o
5 : :
(]
L = «
400

200 400 600 800 1000

OMT

A B | N

T

= g = g = § &= § = §

Source: E. Abraham, G. Lakemeyer, F. Leofante, T. D. Niemdiller, A. Tacchella.
PhD Leofante, IJCAI'20, Information Systems Frontiers 2019, ECMS’19, AAAI'18, iFM’18, ICAPS’17,
PlanRob’17, IRI'17.

RS Erika Abraham -

3. Planning with Optimization Modulo Theories

1000
800

600

76

ROSPlan

400

.v v

200 400 600 800 1000

OMT
N

= g = g = § &= § = §

Source: E. Abraham, G. Lakemeyer, F. Leofante, T. D. Niemdiller, A. Tacchella.
PhD Leofante, IJCAI'20, Information Systems Frontiers 2019, ECMS’19, AAAI'18, iFM’18, ICAPS’17,

PlanRob’17, IRI'17.

RS Erika Abraham -

4. Relevant domains for testing (Siemens)

System model

Target scenario

RS Erika Abraham - 96/105

4. Relevant domains for testing (Siemens)

Simplified
System model ——— over-approximative
system model

Simplified
Target scenario —— over-approximative
target scenario

RS Erika Abraham - 96/105

4. Relevant domains for testing (Siemens)

Simplified
System model ——— over-approximative
system model

Logical encoding ¢
Simplified
Target scenario —— over-approximative
target scenario

RS Erika Abraham - 96/105

4. Relevant domains for testing (Siemens)

Simplified
System model ——— over-approximative
system model
Logical encoding ¢
Simplified
Target scenario ——— over-approximative
target scenario

Test domain

¢ sat?

- sat?

X

RS Erika Abraham - 96/105

4. Relevant domains for testing (Siemens)

Simplified
System model ——— over-approximative
system model

Logical encoding ¢
Simplified
Target scenario —— over-approximative
target scenario

Test domain Test domain Test domain
¢ sat ¢ unsat ¢ sat
- unsat - sat - sat

RS Erika Abraham - 96/ 105

4. Relevant domains for testing (Siemens)

Simplified
System model ——— over-approximative
system model

Logical encoding ¢
Simplified
Target scenario —— over-approximative
target scenario

Test domain Test domain Test domain
@ sat ¢ unsat
2 2
- unsat - sat

RS Erika Abraham - 96/ 105

4. Relevant domains for testing (Siemens)

Simplified
System model ——— over-approximative
system model

Logical encoding ¢
Simplified
Target scenario —— over-approximative
target scenario

Test domain Test domain Test domain Test domain
@ sat ¢ unsat
~>
2 2
- unsat - sat

RS Erika Abraham - 96/ 105

5. Parameter synthesis for probabilistic systems

O~}

40p® +20pq + 6p +3q

Fsose =

68p2 +34pg + 342 +34p + 17q

</,m\\>(_< " (Parametri

Model Checking

—__ Rational Function >

- Plot of Regions
.d Regions

Sampling
- User-defi

L Safe/Un-
Automatic Regions H SMT Solver C Ll,:fufns ;f:) :m
safe Regions
S —

Source: C. Dehnert, S. Junges, N. Jansen, F. Corzilius, M. Volk, H. Bruintjes, J.-P. Katoen, E. Abraham.

PROPhESY: A probabilistic parameter synthesis tool.

In Proc. of CAV’15.
Wit am - 97/105

@ SMT solving
m Approaches

m SMT-RAT

m SMT-LIB

m SMT solvers as integrated engines
m Future challenges

m Hands-on

RS Erika Abraham - 98/105

Usage of SMT solvers

m Standard input language, benchmarks
m Online usage, command-line, programming interfaces

m Black-box usage possible, but specific knowledge is advantageous

m for efficient usage and
m selection of the best fitting tool (e.g. fast vs complete).

RS Erika Abraham - 99/105

Proof generation

m Theoretical basics: algorithms with correctness proofs.

[Correct algorithm]

RS Erika Abraham - 100/ 105

Proof generation

m Theoretical basics: algorithms with correctness proofs.

m Reliable tools: in QF_NRA for SMT-COMP’21, no bugs discovered on
large benchmark sets.

v
.
SMT implementation

Correct algorithm|

Input
problem

RS Erika Abraham - 100/ 105

Proof generation

m Theoretical basics: algorithms with correctness proofs.

m Reliable tools: in QF_NRA for SMT-COMP’21, no bugs discovered on
large benchmark sets.

m But still: bugs can remain undetected for a long time.

v
.
SMT implementation

Correct algorithm|

Input
problem

BT Erika Abraham -

100/ 105

Proof generation

m Theoretical basics: algorithms with correctness proofs.

m Reliable tools: in QF_NRA for SMT-COMP’21, no bugs discovered on
large benchmark sets.

m But still: bugs can remain undetected for a long time.
m Solution: automatically checkable proof certificates.

fffffffffffffffffffffffffffffffffffff ~ Substitution
*

v
.
SMT implementation

[Correct aIgorithm] X
proof of unsatisfiability

——————————————————————————————————— ~| Theorem prover

BT Erika Abraham -

100/ 105

Further functionalities

m Model generation
m Explanations of unsatisfiability (unsat cores, interpolants)
m Optimization

Satisfiability for quantified formulas
Quantifier elimination (get all solutions symbolically)

Scalability

m Preprocessing
Heuristics, especially variable ordering
Machine learning
Closer integration of decision procedures
Parallelization

BT Erika Abraham - 101/ 105

@ SMT solving
m Approaches

m SMT-RAT

m SMT-LIB

m SMT solvers as integrated engines
m Future challenges

m Hands-on

RS Erika Abraham - 102/ 105

SMT-LIB theories

Syntax of core theory

:sorts ((Bool 0))
:funs (
(true Bool)
(false Bool)
(not Bool Bool)
(and Bool Bool Bool :left-assoc)

&é;r (A) (= A A Bool :chainable))
(par (A) (ite Bool A A A))

RS Erika Abraham - 103/105

SMT-LIB theories

Syntax of real theory

:sorts ((Real 0))
:funs (

(+ Real Real Real :left-assoc)
(* Real Real Real :left-assoc)

(< Real Real Bool :chainable)

)

RS Erika Abraham - 103/105

SMT-LIB commands

m Lisp-like script language
m Supported by essentially all SMT solvers
m Easy to parse and extend

Boolean example

(set-logic QF_UF)
(declare-const p Bool)
(assert (and p (not p)))
(check-sat)

RS Erika Abraham - 104 /105

SMT-LIB commands

m Lisp-like script language
m Supported by essentially all SMT solvers
m Easy to parse and extend

Linear integer example

(set-logic QF_LIA)

(declare-const x Int)
(declare-const y Int)

(assert (= (- xy) (+ x (- y) 1))
(check-sat)

RS Erika Abraham - 104 /105

SMT-LIB commands

m Lisp-like script language
m Supported by essentially all SMT solvers
m Easy to parse and extend

Unsatisfiable cores

(set-logic QF_UF)

(set-option :produce-unsat-cores true)
(declare-const p Bool)
(declare-const q Bool)
(declare-const r Bool)

(assert (! (=> p q) :named a))
(assert (! (=> q r) :named b))
(assert (! (not (=> p r)) :named c))
(assert ...)

(check-sat)

(get-unsat-core)

RS Erika Abraham - 104 /105

SMT-LIB commands

m Lisp-like script language
m Supported by essentially all SMT solvers
m Easy to parse and extend

Optimization

(set-logic QF_LIA)
(declare-const x Int)
(declare-const y Int)

(assert (and (< y 5) (< x 2)))
(assert (< (- y x) 1))
(maximize (+ x y))

(check-sat)

(get-objectives)

RS Erika Abraham - 104 /105

Solving theory formulas with SMT solvers

m https://cvch.github.io/tutorials/beginners

m SMT-LIB input:
https://microsoft.github.io/z3guide/docs/logic/intro/
https://smt-lib.org/examples.shtml

m Z3/cvc5 Python interface:
https://ericpony.github.io/z3py-tutorial/guide-examples.htm

RS Erika Abraham - 105/105

	SAT solving
	Propositional logic
	DPLL+CDCL SAT solving
	Propositional encoding examples
	Hands-on

	SMT solving
	Approaches
	SMT-RAT
	SMT-LIB
	SMT solvers as integrated engines
	Future challenges
	Hands-on

