An Enriched Category Theory of Language **Tai-Danae Bradley**

SandboxAQ / The Master's University / May 27, 2025

a mathematical framework for language (inspired by LLMs)

category theory

Why? It allows us to bring in *few* assumptions.

a mathematical framework for language (inspired by LLMs)

category theory

Why? It allows us to bring in *few* assumptions.

a mathematical framework for language (inspired by LLMs)

language

It's a little different than fitting a model to language. Instead, we're just seeing "what's there."

category theory

Why? It allows us to bring in *few* assumptions.

a mathematical framework for language (inspired by LLMs)

AN ENRICHED CATEGORY THEORY OF LANGUAGE: FROM SYNTAX TO SEMANTICS

TAI-DANAE BRADLEY¹, JOHN TERILLA², AND YIANNIS VLASSOPOULOS³

La Matematica, vol. 1, pp. 551-580 (2022)

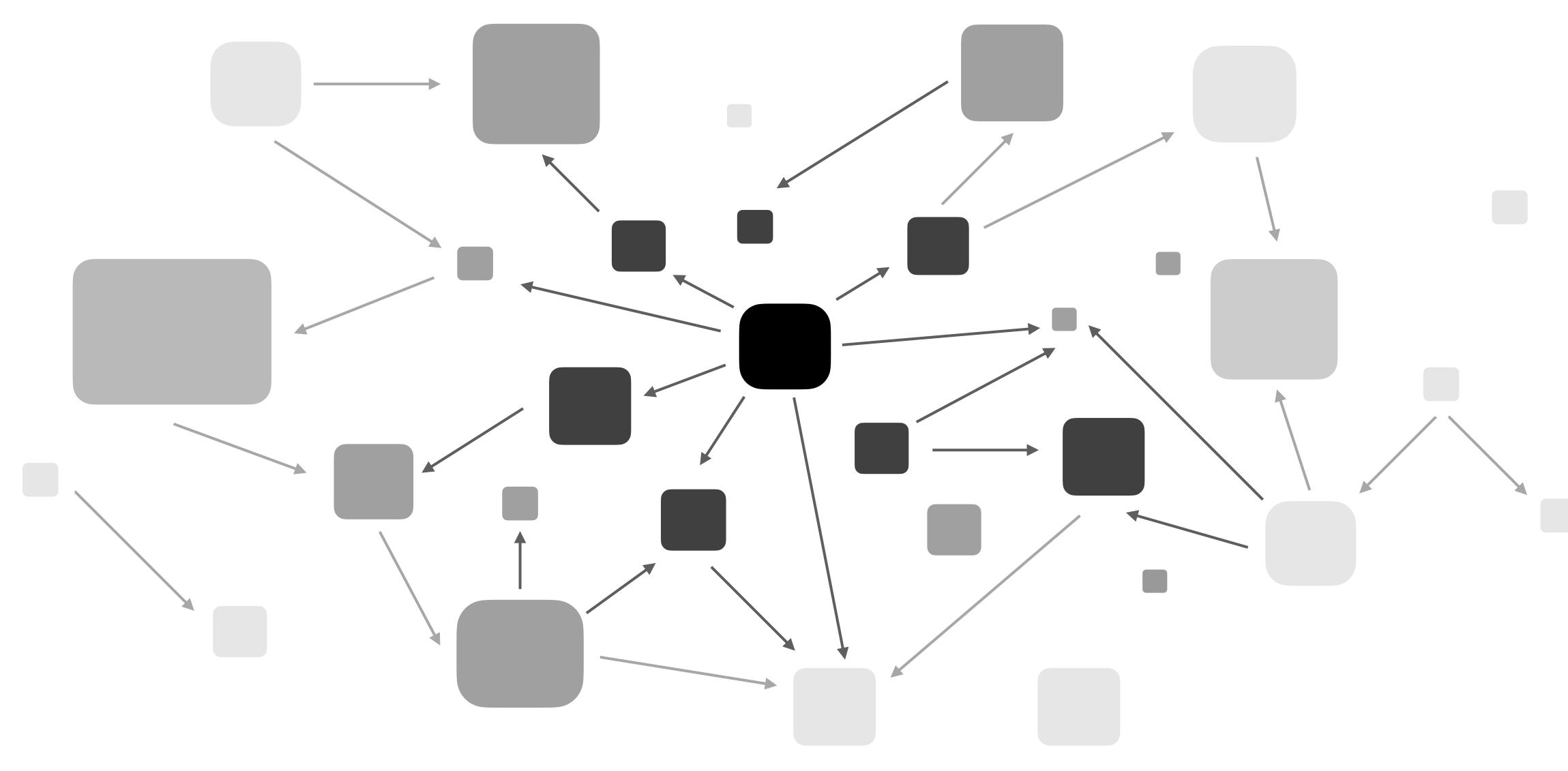
language

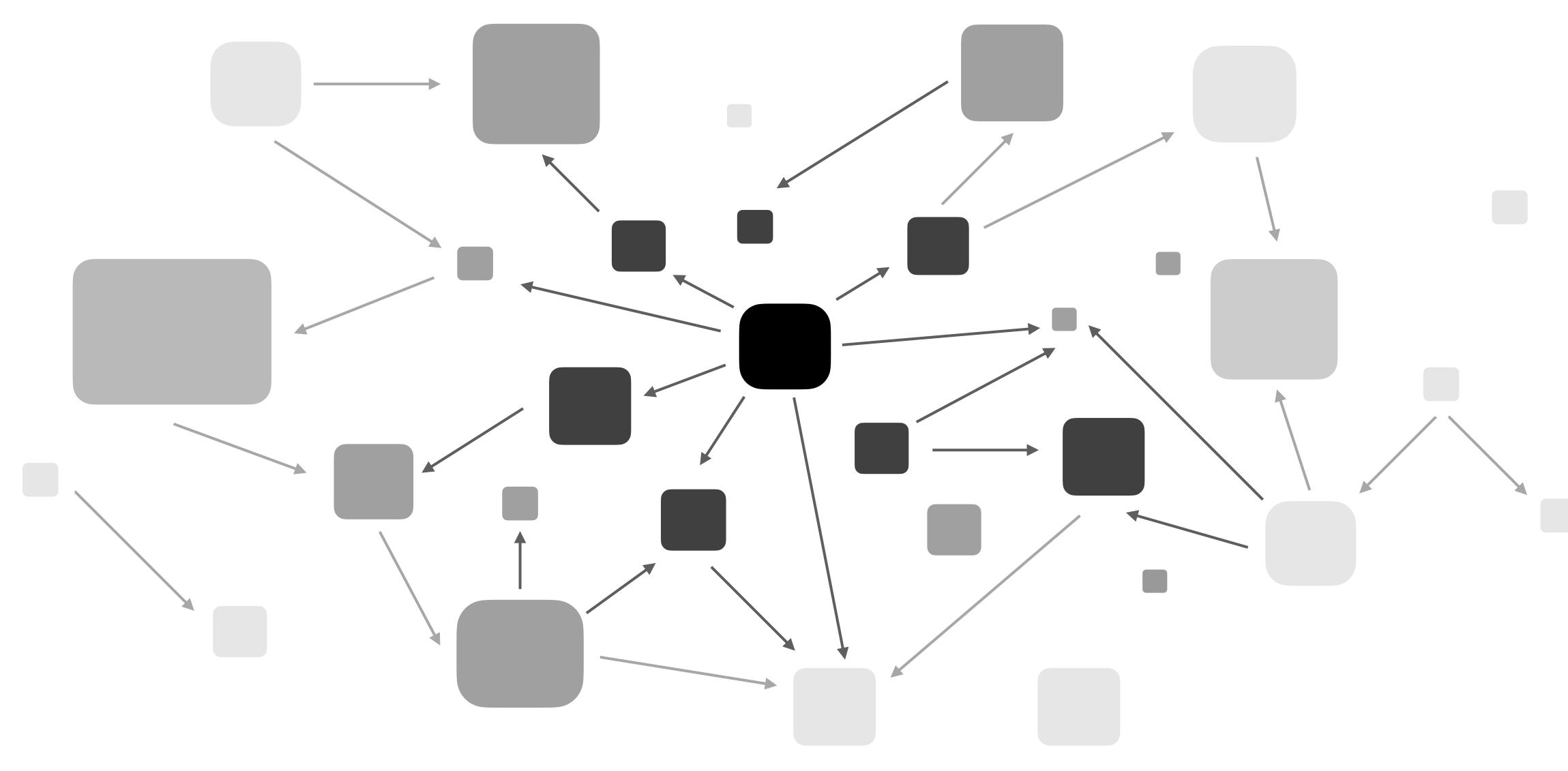
It's a little different than fitting a model to language. Instead, we're just seeing "what's there."

enriched

The statistics of texts can be captured neatly using a "richer" version of category theory.

introduce category theory describe language as a category see what we can do





function

function

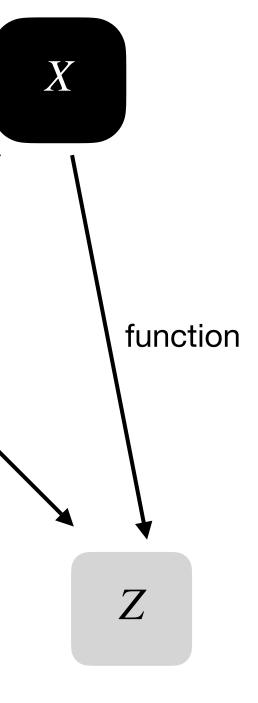
sets

Ζ

function

function

sets



linear transformation

linear transformation

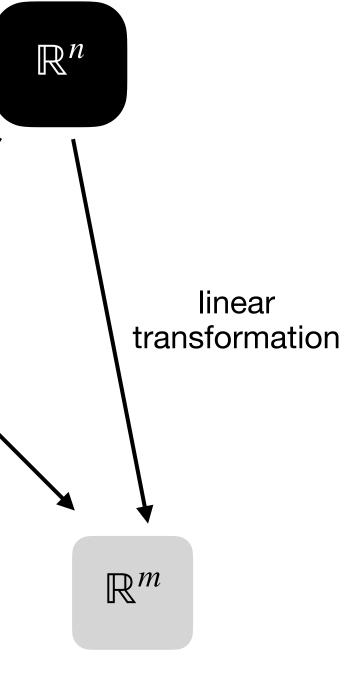
vector spaces

 \mathbb{R}^m

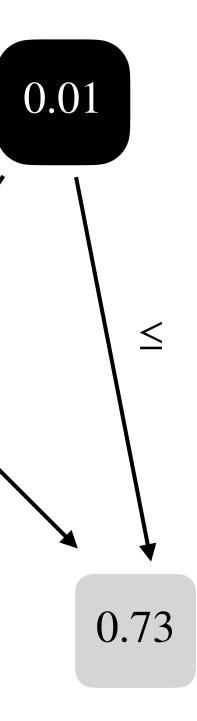
linear transformation

linear transformation

vector spaces



real numbers in [0,1]



 \leq

×

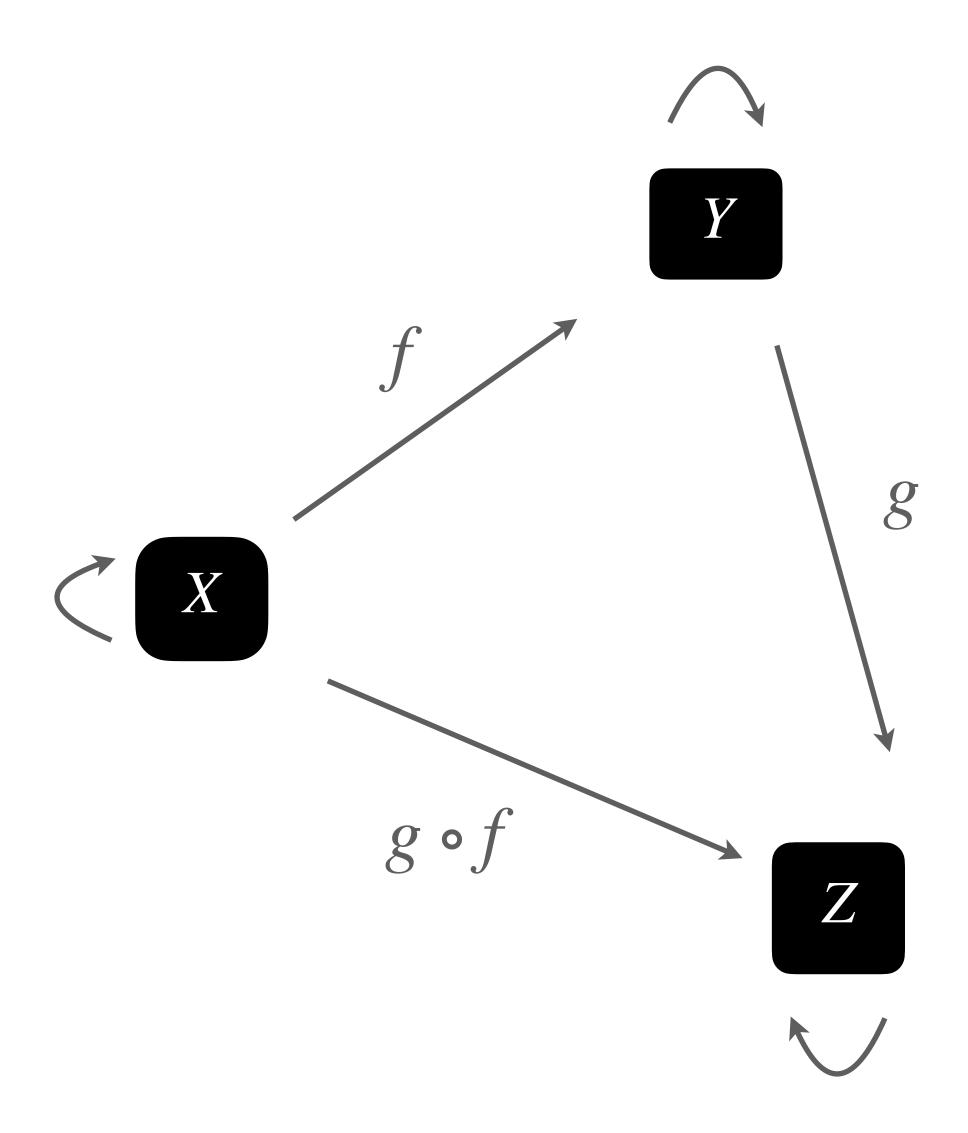
 \leq

A Category Loose Definition

A category C consists of

- **objects** *X*, *Y*, ...
- morphisms (i.e. arrows) between them
- a composition rule

that satisfy some reasonable axioms.



language

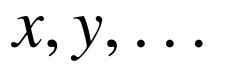
OBJECTS

language

OBJECTS

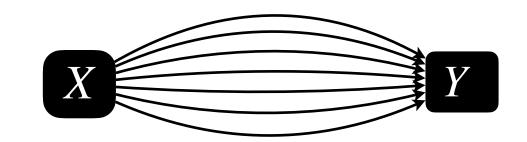
language

STRINGS



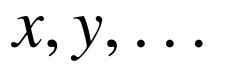
OBJECTS

A SET



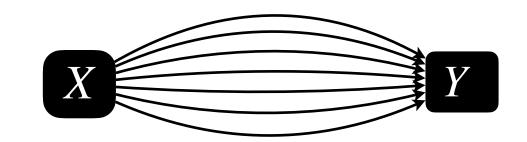
language

STRINGS



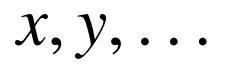
OBJECTS

A SET

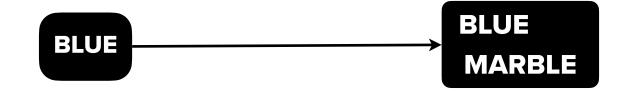


language

STRINGS



A SET



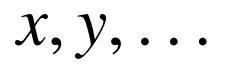
OBJECTS

A SET

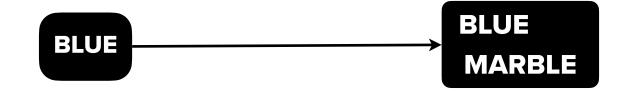
C(X, Y)

language

STRINGS



A SET



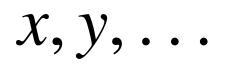
OBJECTS

A SET

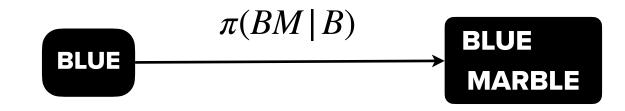
C(X, Y)

language

STRINGS



A NUMBER



OBJECTS

A SET

C(X, Y)

language

STRINGS



A NUMBER

 $\pi(y \mid x)$

OBJECTS

A SET

C(X, Y)

A COMPOSITION RULE

 $C(X, Y) \times C(Y, Z) \rightarrow C(X, Z)$

language

STRINGS



A NUMBER

 $\pi(y \mid x)$

OBJECTS

A SET

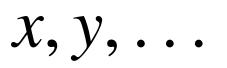
C(X, Y)

A COMPOSITION RULE

 $C(X, Y) \times C(Y, Z) \rightarrow C(X, Z)$

language

STRINGS



A NUMBER

 $\pi(y \mid x)$

Language as a Category, L Summary so far...

Consider all strings x, y, \ldots from a finite set of atomic symbols. (*Think: expressions in a language.*)

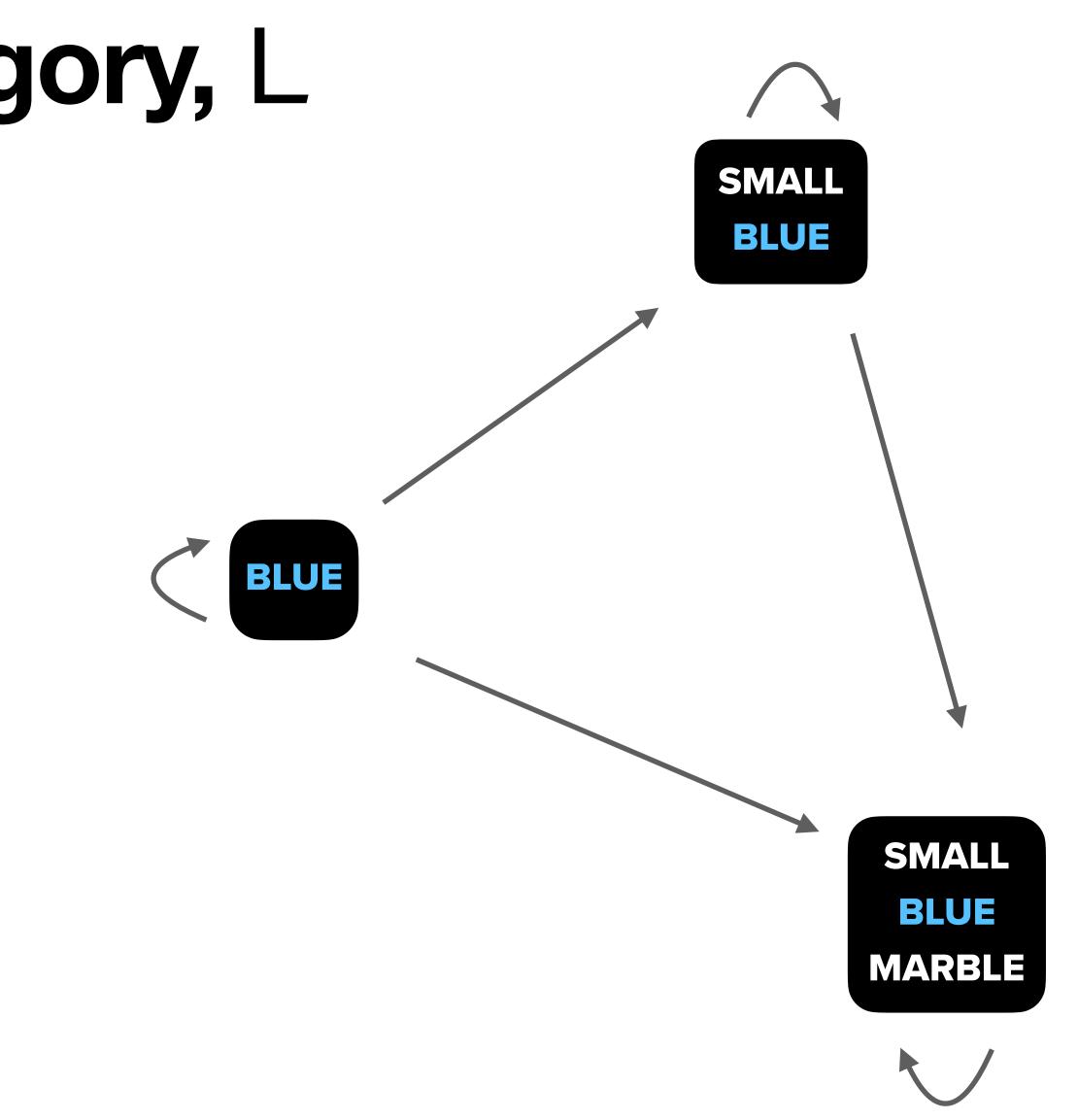
Write $x \rightarrow y$ to indicate **substring** containment.

• Arrows compose:

if $x \to y \to z$, then $x \to z$

• Each string contains itself:

$$x \to x$$



introduce category theory describe language as a category See what we can do

Represent Meanings

Represent Enriched Meanings

2. Operate on Representations

3. Incorporate **Probabilities**

5. Operate on **Enriched** Representations

6. Adopt a **Geometric Perspective**

Represent Meanings

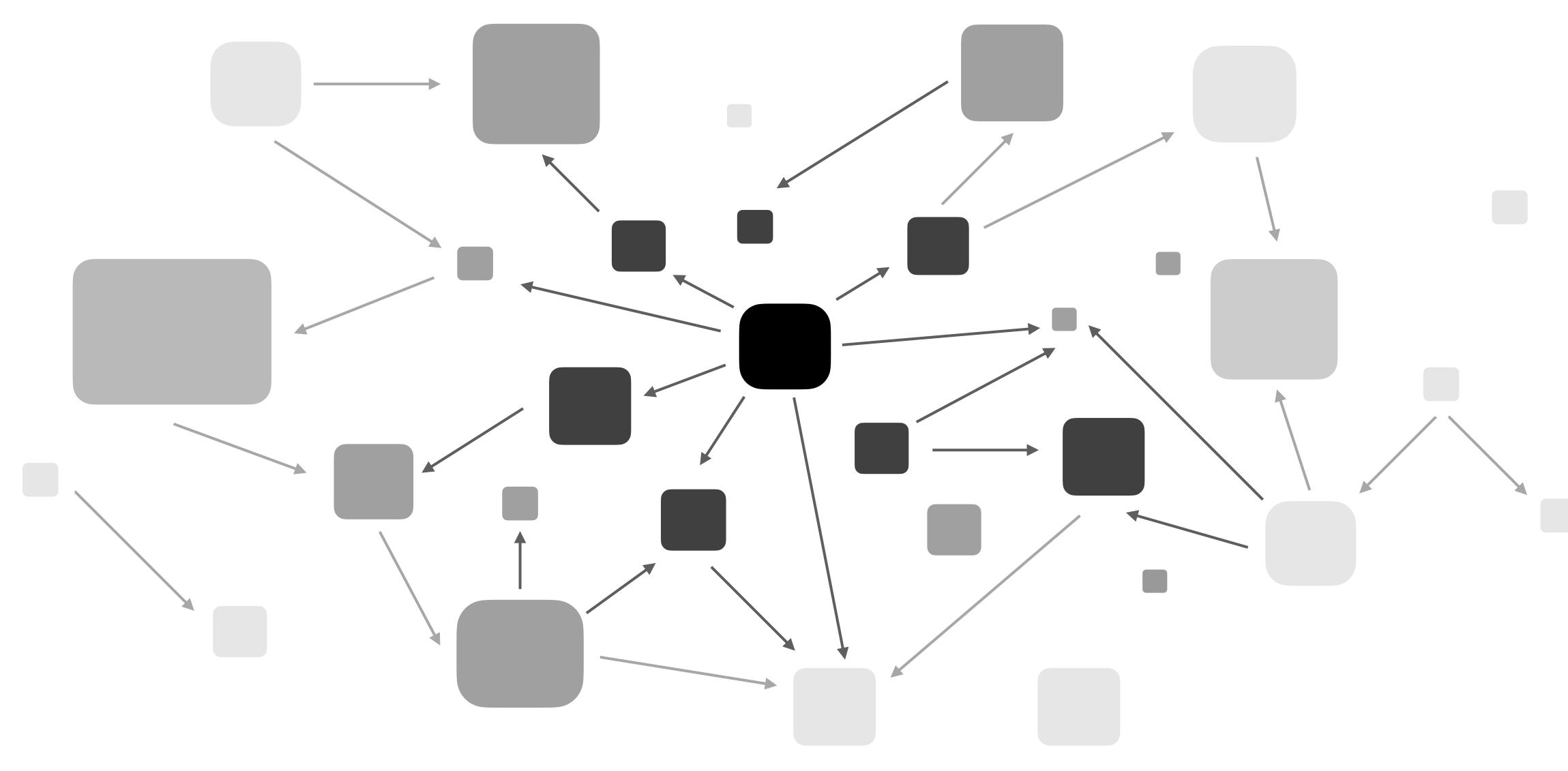
4. Represent **Enriched Meanings**

5. Operate on **Enriched** Representations

2. Operate on Representations

3. Incorporate **Probabilities**

6 Adopt a **Geometric Perspective**



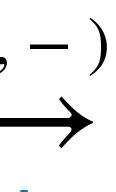
C(X, -)

C(X, -)

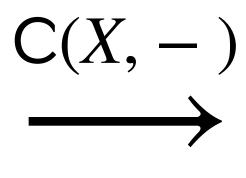
C

functor

C(X, -)



Set



functor

$C(X, -) \cong C(Y, -)$ $X \simeq Y$ iff **Yoneda Lemma**

(or rather, a corollary of it)

 \square

C(X, -)

Idea: Given a "prompt" (i.e. expression) *x*, consider the network of ways it fits into the language category L.

Idea: Given a "prompt" (i.e. expression) x, consider the network of ways it fits into the language category L.

Ask: "Is x is contained in a given expression y?"

• If so, there is **one** arrow $x \rightarrow y$. Otherwise, there is **no** arrow.

Idea: Given a "prompt" (i.e. expression) x, consider the network of ways it fits into the language category L.

Ask: "Is x is contained in a given expression y?"

• If so, there is **one** arrow $x \rightarrow y$. Otherwise, there is **no** arrow.

 $\chi \mapsto$

 $L(blue, curiosity killed the cat) = \emptyset$

$$\rightarrow$$
 L(x, -)

L(blue, blue marble) = $\{ \rightarrow \}$

Idea: Given a "prompt" (i.e. expression) x, consider the network of ways it fits into the language category L.

Ask: "Is x is contained in a given expression y?"

• If so, there is **one** arrow $x \rightarrow y$. Otherwise, there is **no** arrow.

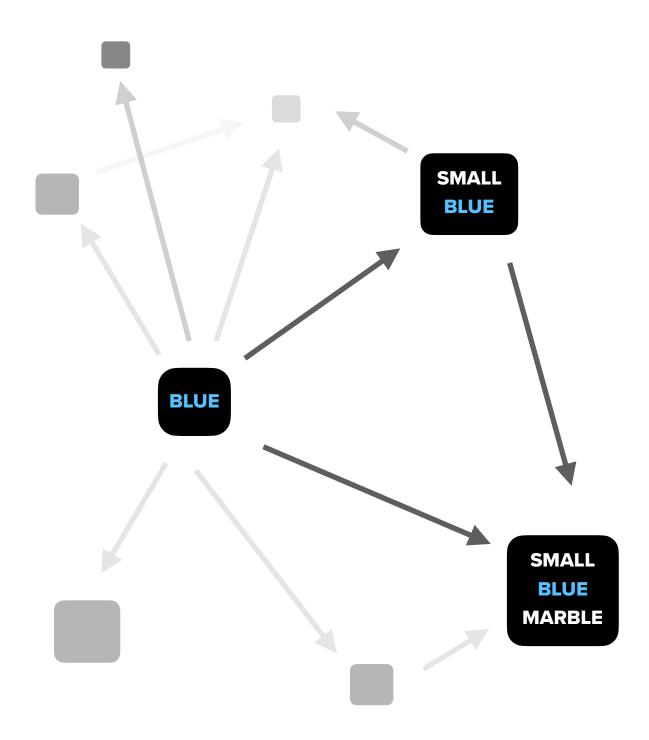
Upshot: The Yoneda Lemma motivates us to consider the functor

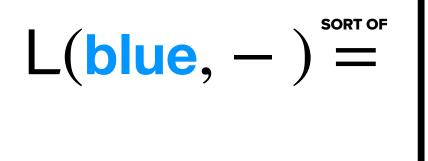
which "represents" (or is a rough approximation to) the meaning of x. **Example**:

 $L(blue, y) = \langle$

- $L(x, -): L \rightarrow Set$

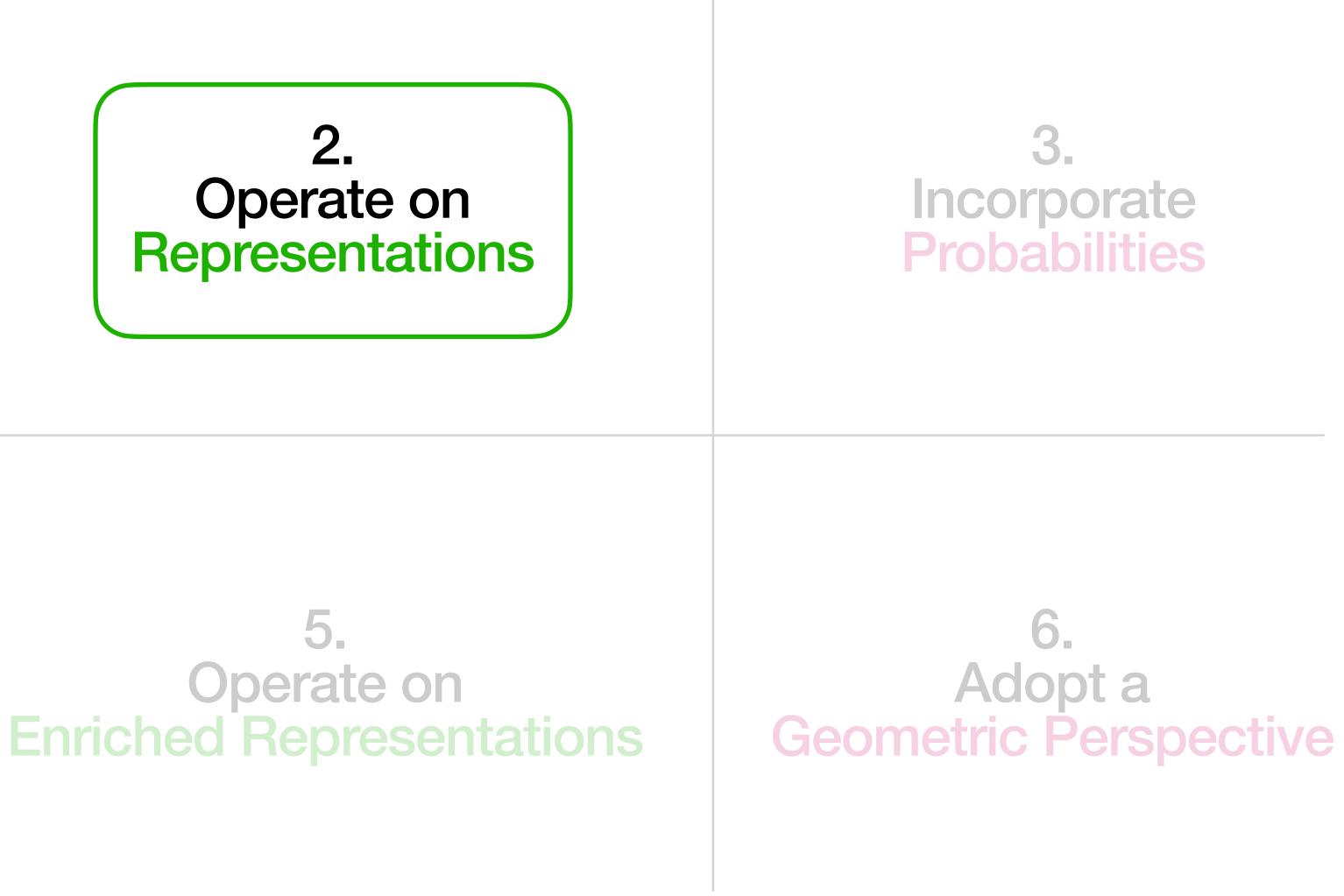
$$\begin{cases} \{ \rightarrow \} & \text{if blue} \le y \\ \emptyset & \text{otherwise} \end{cases}$$





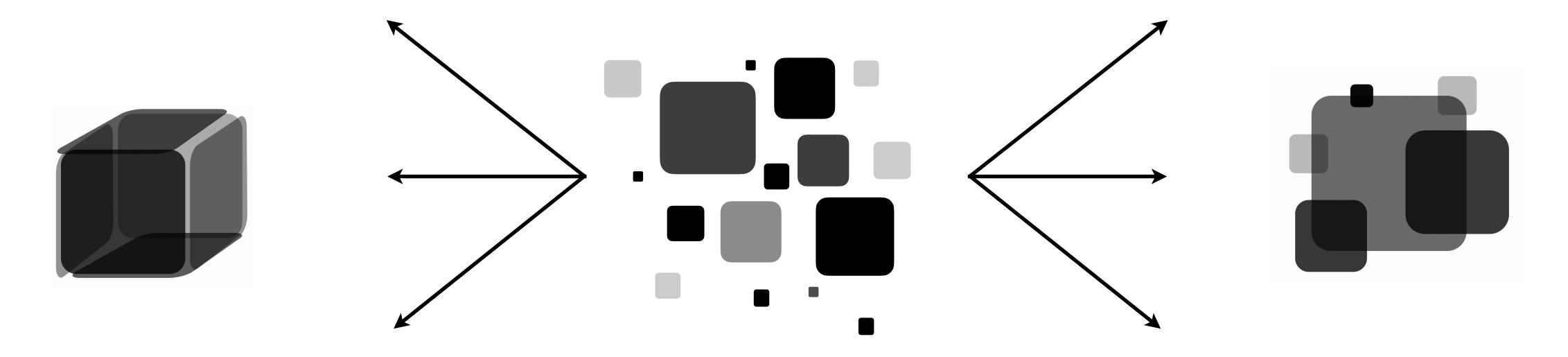
deep red Bing cherries small blue marble beautiful blue ocean did you put the kettle on red and blue fireworks Sencha green tea

1. Represent Meanings



4. Represent **Enriched Meanings**

limits

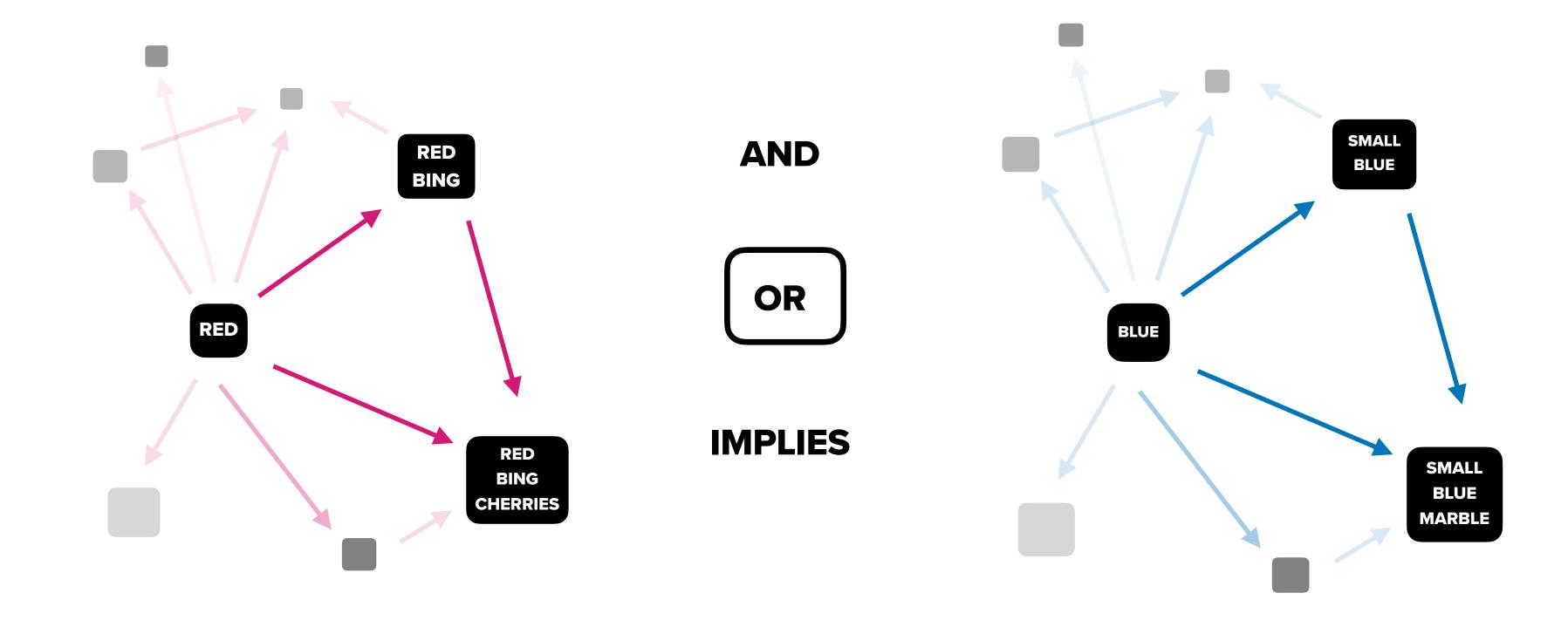


intersections, products, direct sums, meets, greatest common divisors, kernels,...

unions, coproducts, direct sums, joins, least common multiples, cokernels,...

All functors $L \rightarrow Set$ form a new category Set^{L} that has *lots* of structure, which it inherits from the category of sets. Just as we can combine sets in many ways (intersections, unions, etc.) we can now combine *functors* in many ways.

Practically speaking, this means we have notions of conjunction, **disjunction**, and implication. (Formally speaking, Set^L has "all limits, colimits, and is Cartesian closed.")



All functors $L \rightarrow Set$ form a new category Set^{L} that has *lots* of structure, which it inherits from the category of sets. Just as we can combine sets in many ways (intersections, unions, etc.) we can now combine *functors* in many ways.

Practically speaking, this means we have notions of conjunction, **disjunction**, and implication. (Formally speaking, Set^L has "all limits, colimits, and is Cartesian closed.")

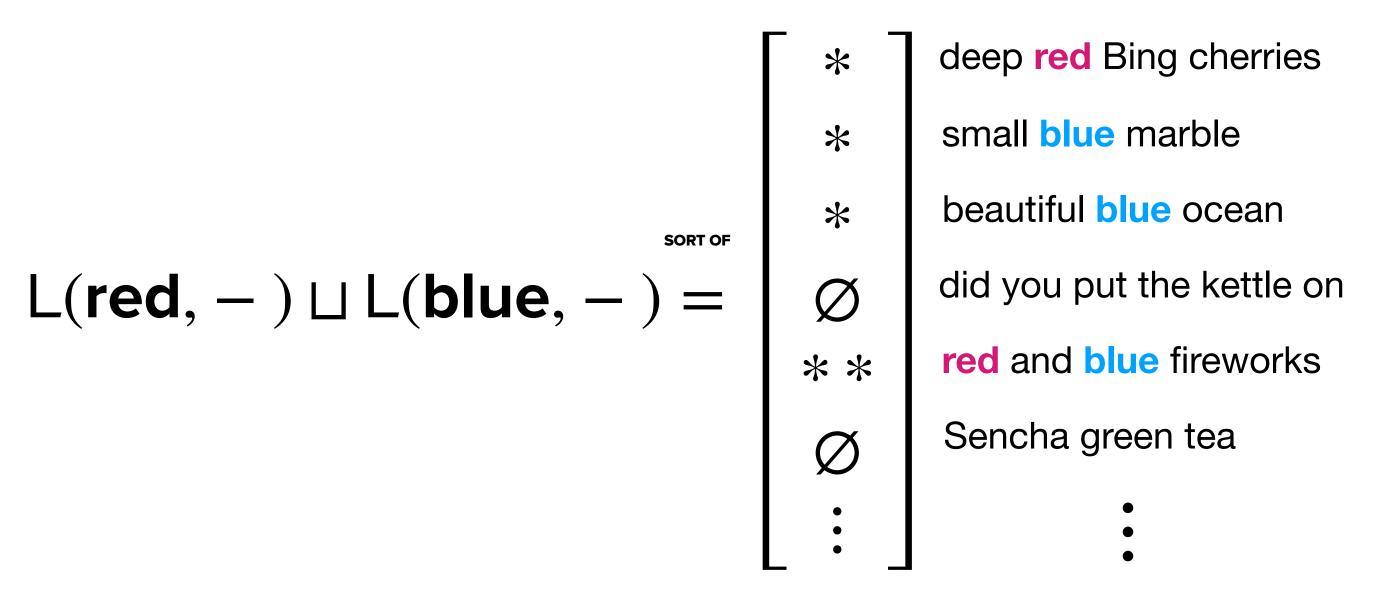
L(red, -)

AND

IMPLIES

All functors $L \rightarrow Set$ form a new category Set^{L} that has *lots* of structure, which it inherits from the category of sets. Just as we can combine sets in many ways (intersections, unions, etc.) we can now combine *functors* in many ways.

Practically speaking, this means we have notions of conjunction, **disjunction**, and implication. (Formally speaking, Set^L has "all limits, colimits, and is Cartesian closed.")



1. Represent Meanings

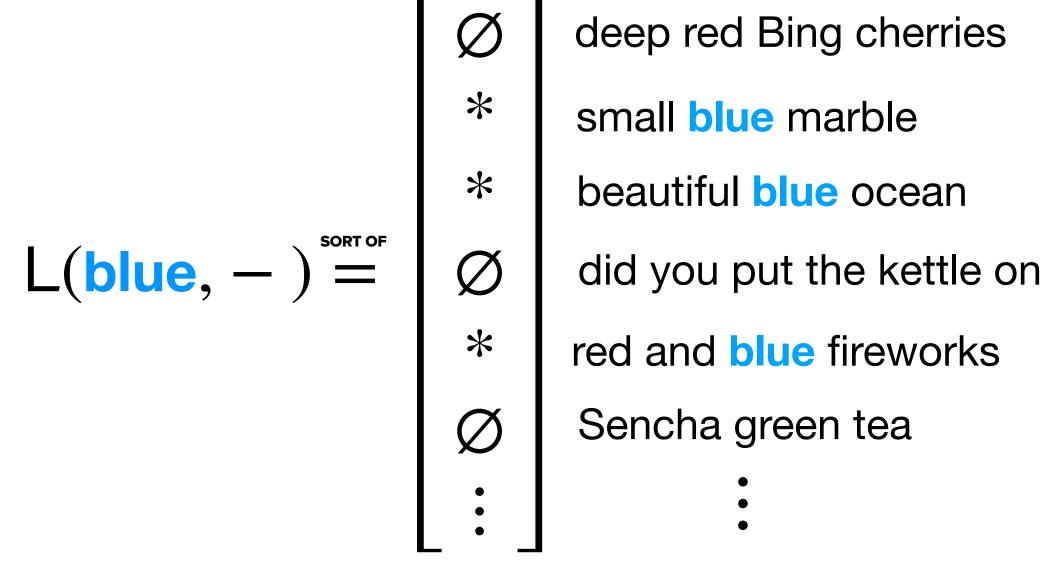
2. Operate on Representations

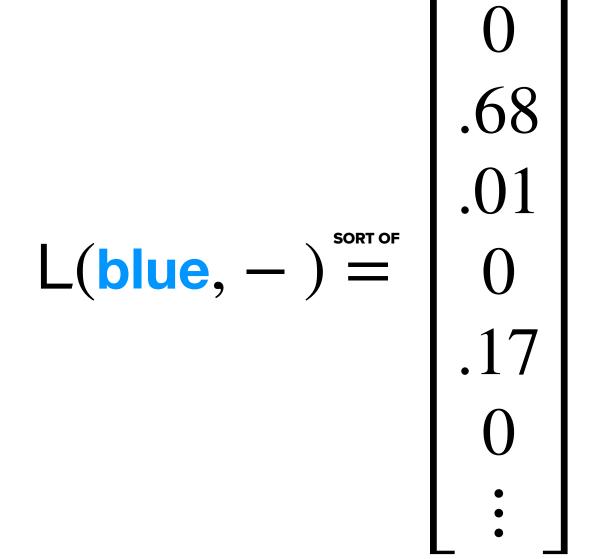
4. Represent Enriched Meanings

5. Operate on Enriched Representations

3. Incorporate Probabilities

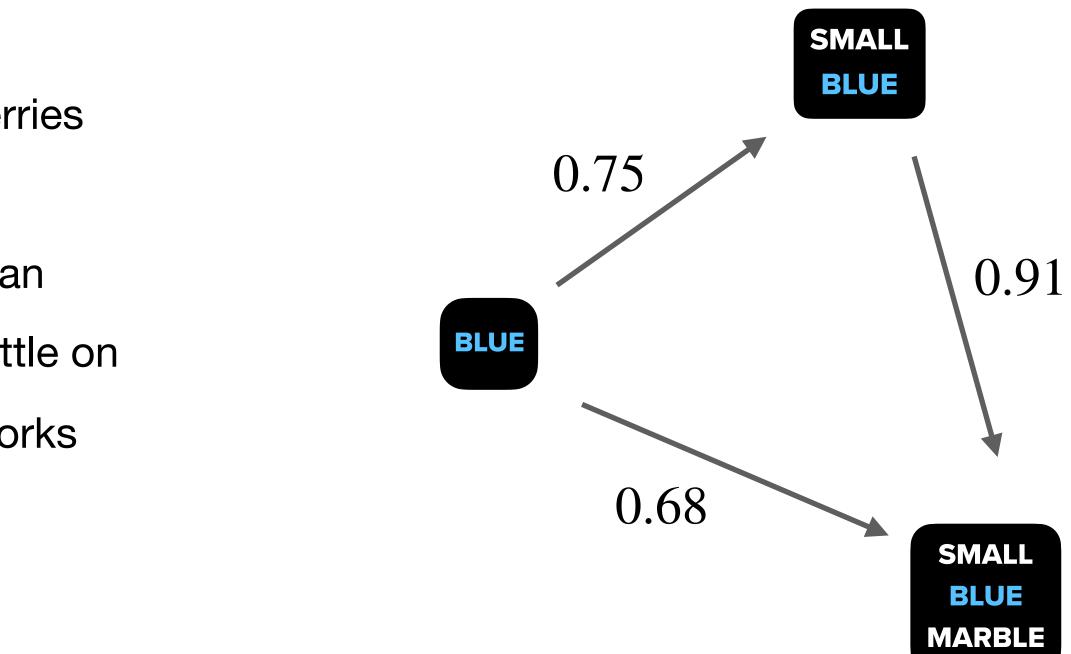
6. Adopt a Geometric Perspective

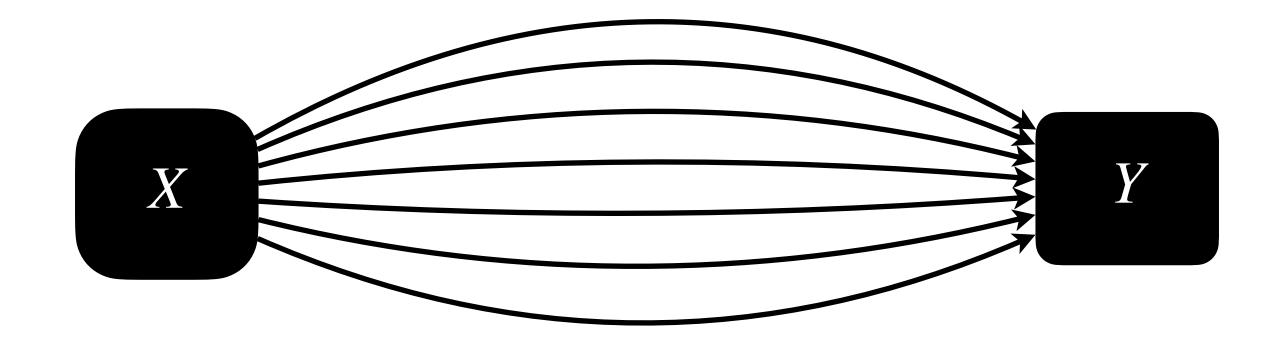




deep red Bing cherries small blue marble beautiful blue ocean did you put the kettle on red and blue fireworks Sencha green tea

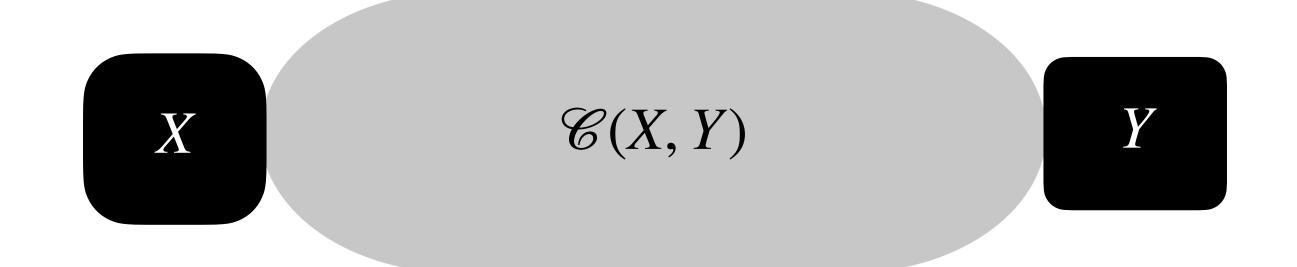
•





In (ordinary) **category theory**, each pair of objects has an associated **set**

C(X, Y)



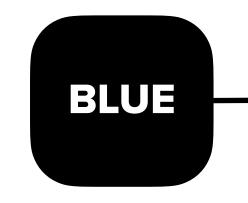
In (ordinary) **category theory**, each pair of objects has an associated **set**

C(X, Y)

In **enriched category theory**, each pair of objects has an associated **object**

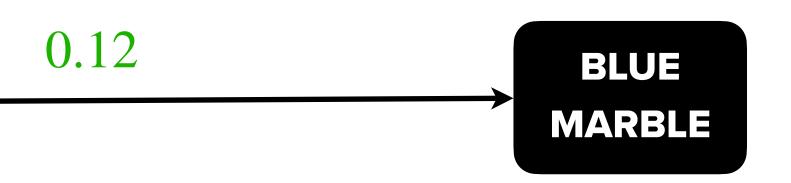
$\mathscr{C}(X, Y)$

in some sufficiently nice category



In (ordinary) **category theory**, each pair of objects has an associated **set**

C(X, Y)



In **enriched category theory**, each pair of objects has an associated **object**

$\mathscr{C}(X, Y)$

in some sufficiently nice category

like [0,1], as hinted earlier

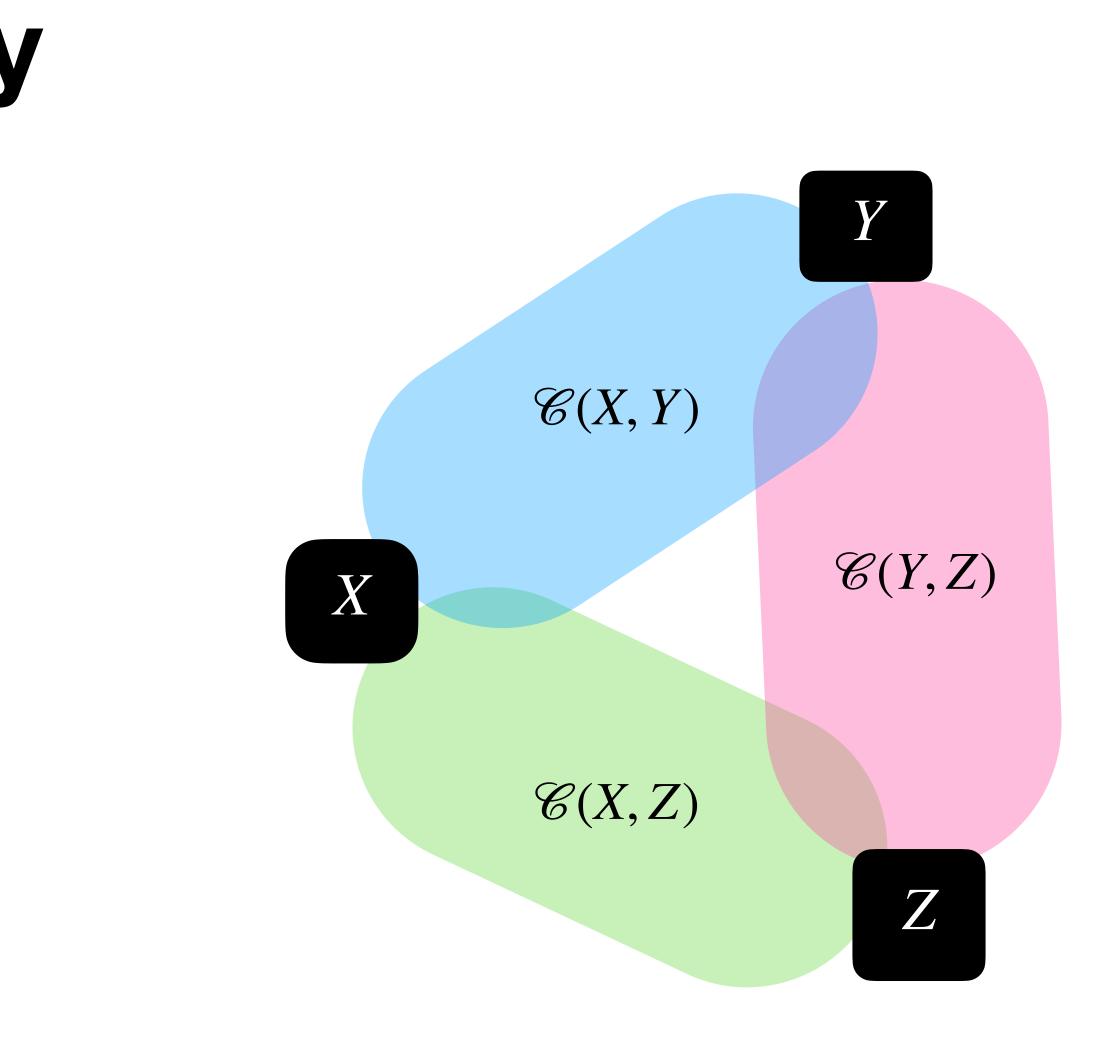
An Enriched Category Very Loose Definition

Given a sufficiently nice category \mathcal{V} , a \mathcal{V} -enriched category \mathcal{C} has

- **objects** *X*, *Y*, ...
- an object $\mathscr{C}(X, Y)$ in \mathscr{V}
- a "composition rule"

 $\mathscr{C}(X,Y)\otimes \mathscr{C}(Y,Z)\to \mathscr{C}(X,Z)$

that satisfy reasonable axioms.



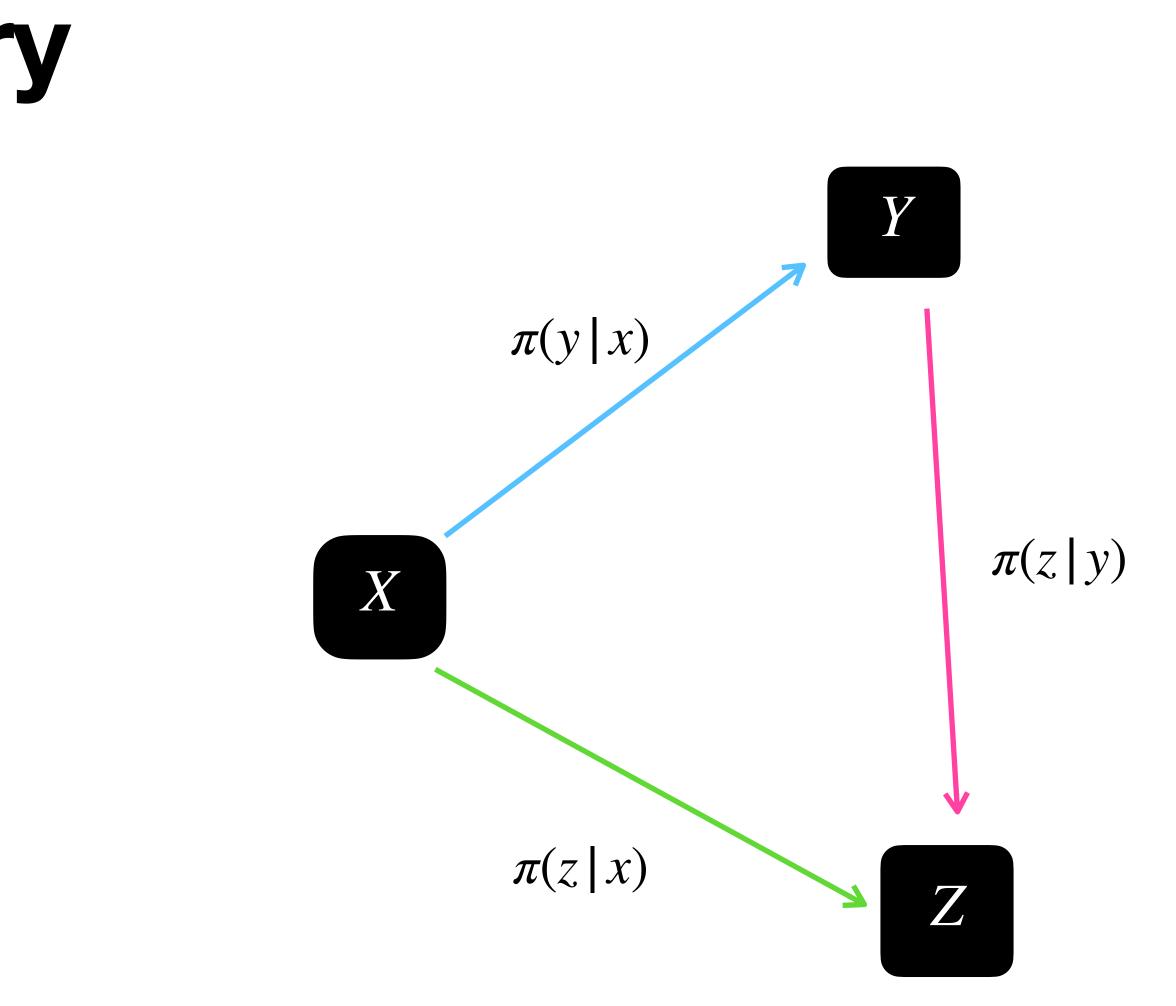
An Enriched Category Very Loose Definition

We are interested in the case when the base category is the unit interval [0,1].

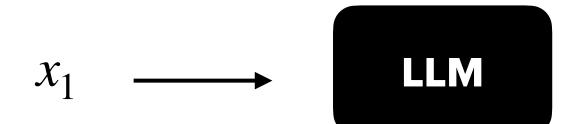
We want:

- strings *x*, *y*, ...
- a probability of continuation $\pi(y | x)$
- But do we have this inequality?

 $\pi(y \,|\, x) \cdot \pi(z \,|\, y) \le \pi(z \,|\, x)$



For any prompt x, the LLM gives a probability distribution p(-|x) on the set of tokens. These probabilities multiply in the following sense:



For any prompt *x*, the LLM gives a probability distribution p(-|x) on the set of tokens.

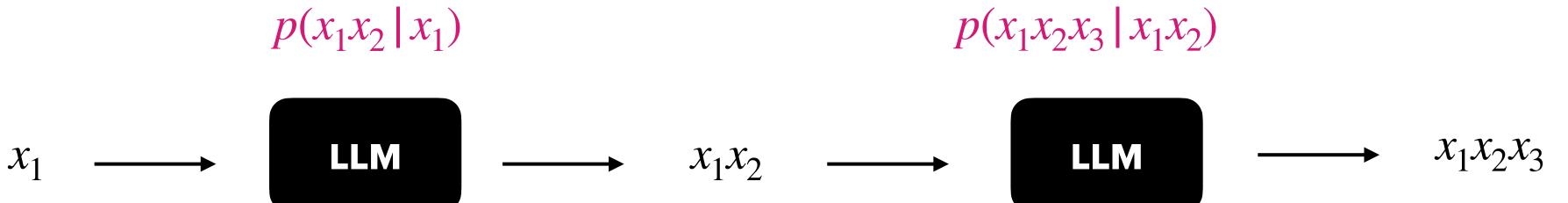
These probabilities multiply in the following sense:

$p(x_1x_2 | x_1)$

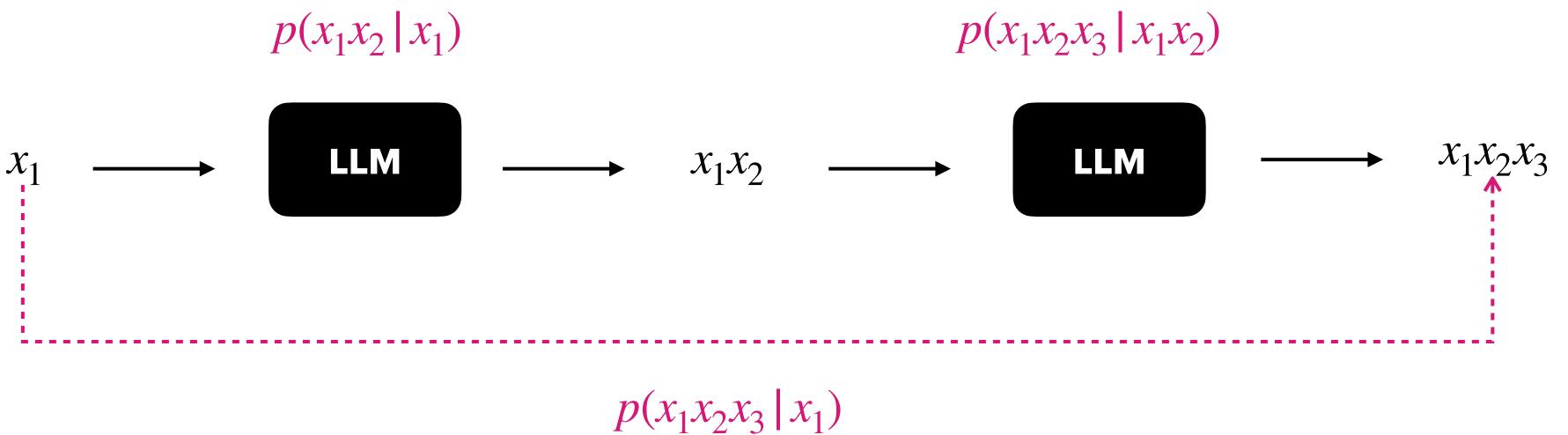
 $x_1 x_2$

For any prompt x, the LLM gives a probability distribution p(-|x) on the set of tokens.

These probabilities multiply in the following sense:

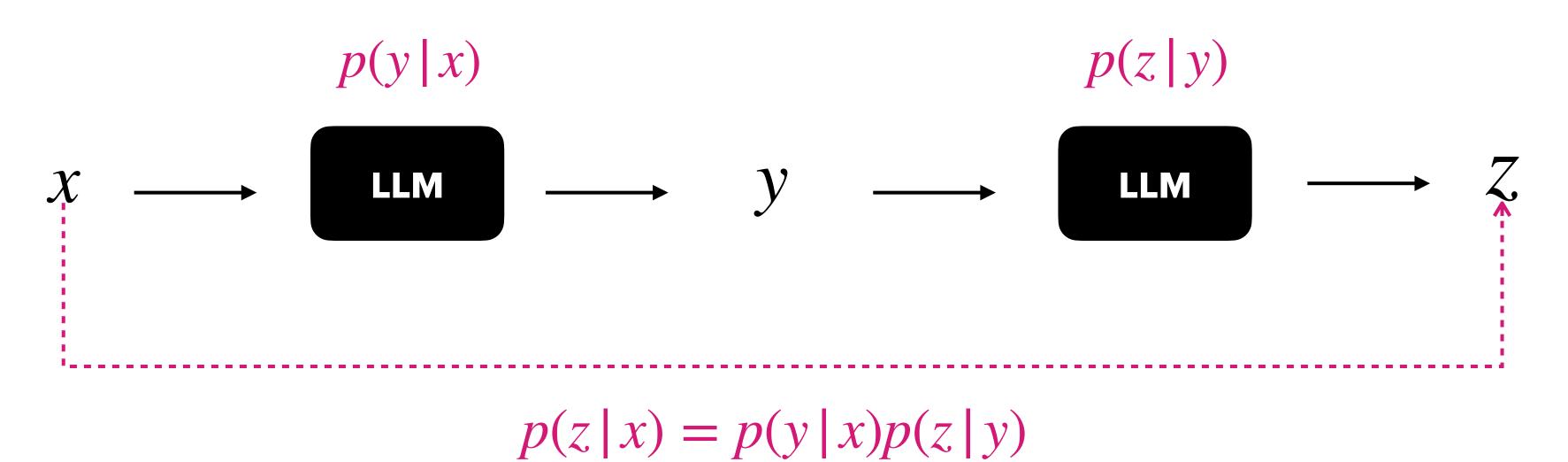


For any prompt x, the LLM gives a probability distribution p(-|x) on the set of tokens. These probabilities multiply in the following sense:



For any prompt *x*, the LLM gives a probability distribution p(-|x|) on the set of tokens.

These probabilities multiply in the following sense:



(so we get an *equality,* in fact)

Language as an Enriched Category, \mathscr{L} Over the Unit Interval

Given an LLM and strings $x \rightarrow y$, define* the number $\pi(y \mid x)$ as a product of the successive probabilities used to obtain *y* from *x* one token at a time:

$$\pi(y \mid x) := \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \not\rightarrow y \\ \prod_{i=1}^{k(y)} p(x_{t+i} \mid x_{< t+i}) & \text{if } x \rightarrow y \end{cases}$$

* Thanks to Juan Pablo Vigneaux for this observation. In this definition, we write $x \rightarrow y$ whenever y extends x on the right.

Language as an Enriched Category, \mathscr{L} Over the Unit Interval

Given an LLM and strings $x \rightarrow y$, define* the number $\pi(y | x)$ as a product of the successive probabilities used to obtain *y* from *x* one token at a time:

$$\pi(y \mid x) := \begin{cases} 1 & \text{if } x = y \\ 0 & \text{if } x \not\rightarrow y \\ \prod_{i=1}^{k(y)} p(x_{t+i} \mid x_{< t+i}) & \text{if } x \rightarrow y \end{cases}$$

* Thanks to Juan Pablo Vigneaux for this observation. In this definition, we write $x \rightarrow y$ whenever y extends x on the right.

This number is an object in the category [0,1], and it satisfies the "**composition rule**"

$$\pi(y \,|\, x) \cdot \pi(z \,|\, y) \le \pi(z \,|\, x).$$

for all strings *x*, *y*, *z*.

So, we view language as a category \mathscr{L} enriched over [0,1].

categories

OBJECTS

A SET

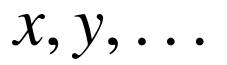
C(X, Y)

A COMPOSITION RULE

 $C(X, Y) \times C(Y, Z) \rightarrow C(X, Z)$

language

STRINGS



A NUMBER

 $\pi(y \mid x)$

A COMPOSITION RULE

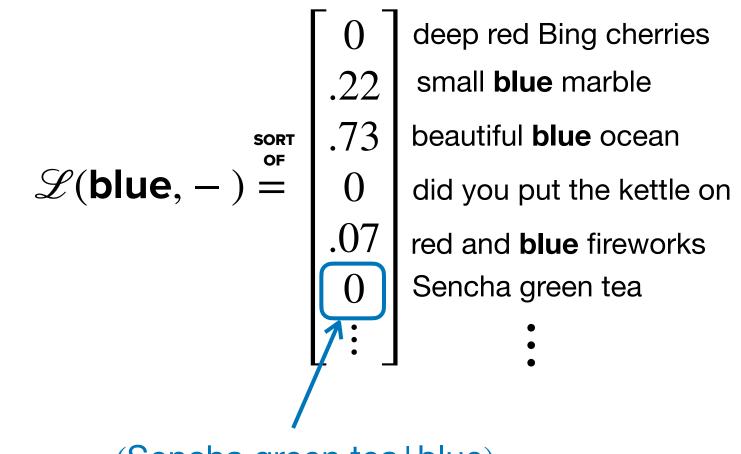
 $\pi(y \,|\, x) \cdot \pi(z \,|\, y) \le \pi(z \,|\, x)$

1. 2. 3. Operate on Represent Incorporate Representations **Probabilities** Meanings 5. 6. Represent Enriched Meanings Adopt a Operate on **Enriched** Representations **Geometric Perspective**

4. Represent Enriched Meanings

Consider enriched functors $\mathscr{L} \to [0,1]$ associated to expressions. These contain the same information as before, plus probabilities.

Ex: The functor $\mathscr{L}(\text{blue}, -)$ is supported on all texts that contain "blue."

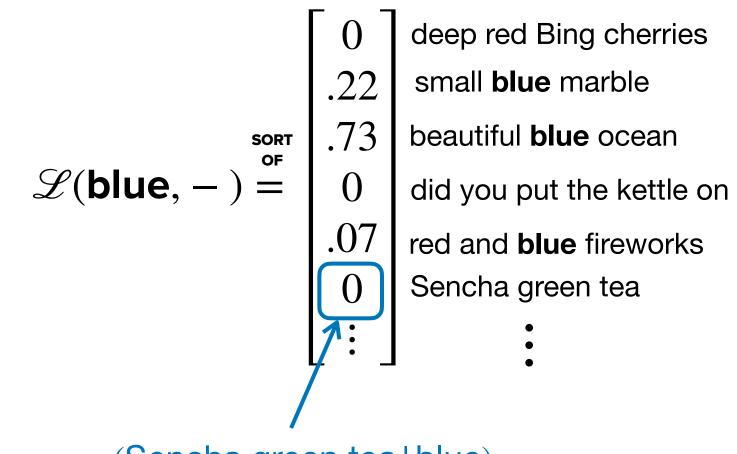


 π (Sencha green tea|blue)

4. Represent **Enriched Meanings**

Consider enriched functors $\mathscr{L} \to [0,1]$ associated to expressions. These contain the same information as before, plus probabilities.

Ex: The functor $\mathscr{L}(\text{blue}, -)$ is supported on all texts that contain "blue."

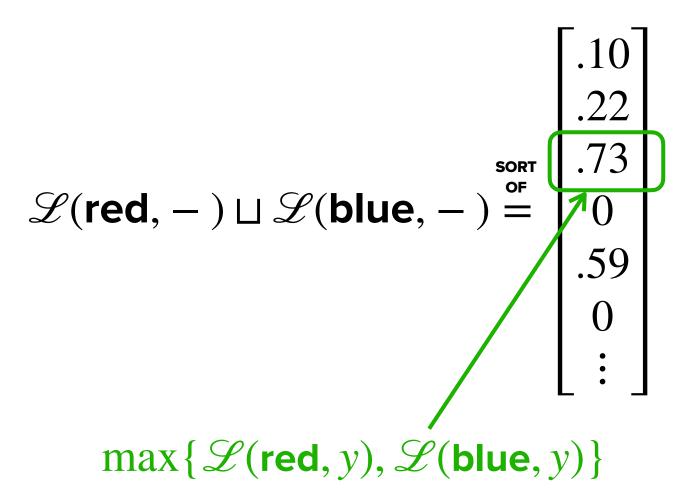


 π (Sencha green tea | blue)

5. Operate on **Enriched Representations**

The enriched functor category $[0,1]^{\mathscr{L}}$ has rich structure, including the enriched versions of limits, colimits, and Cartesian closure.

So, we can again make sense of logical operations like conjunction, disjunction, and implication.



1. Represent Meanings

2. Operate on Representations

4. Represent Enriched Meanings

5. Operate on Enriched Representations

3. Incorporate Probabilities

6. Adopt a Geometric Perspective

We can work with *distances* instead of *probabilities by* considering the function

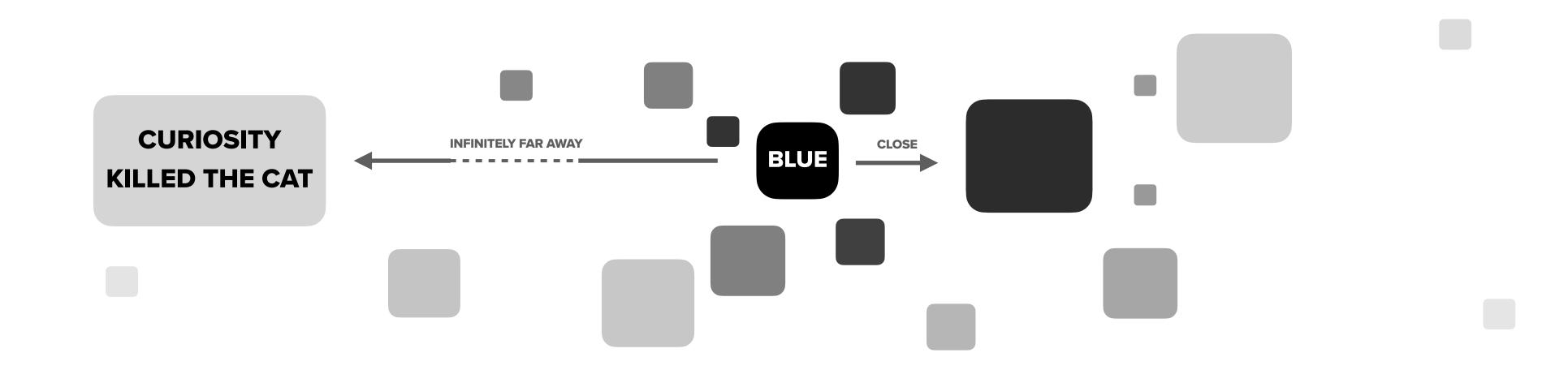
The **distance** between expressions *x* and *y* is defined by

- $-\ln: [0,1] \rightarrow [0,\infty].$
- $d(x, y) = -\ln \pi(y \mid x).$

We can work with *distances* instead of *probabilities by* considering the function

The **distance** between expressions *x* and *y* is defined by

Likely continuations of a text x are **close** to it. Other texts that are not continuations are infinitely far away.



- $-\ln: [0,1] \rightarrow [0,\infty].$
- $d(x, y) = -\ln \pi(y \mid x).$

Repeat the story all over again.

Distances satisfy a "**composition rule**." In fact, it is enriched category theory all over again!

 $d(x, y) + d(y, z) \ge d(x, z)$

A $[0,\infty]$ -enriched category is also called a **generalized metric space**, and we can compute the versions of the previous constructions:

- **represent** meanings as "vectors" (i.e. enriched functors)
- **combine** those representations using enriched categorical operations

Repeat the story all over again.

Distances satisfy a "**composition rule**." In fact, it is enriched category theory all over again!

 $d(x, y) + d(y, z) \ge d(x, z)$

A $[0,\infty]$ -enriched category is also called a **generalized metric space**, and we can compute the versions of the previous constructions:

- **represent** meanings as "vectors" (i.e. enriched functors)
- **combine** those representations using enriched categorical operations

What else do we gain from a geometric perspective?

 Stéphane Gaubert (INRIA) and Yiannis Vlassopoulos (IHES, ARC) recently interpreted this generalized metric space through the lens of tropical geometry.

The $[0,\infty]$ -category of language can be viewed as a polyhedron, with a geometric interpretation of the "meaning" of texts as generating this polyhedron.

DIRECTED METRIC STRUCTURES ARISING IN LARGE LANGUAGE MODELS

STÉPHANE GAUBERT AND YIANNIS VLASSOPOULOS

arXiv: 2405.12264

Repeat the story all over again.

Distances satisfy a "**composition rule**." In fact, it is enriched category theory all over again!

 $d(x, y) + d(y, z) \ge d(x, z)$

A $[0,\infty]$ -enriched category is also called a **generalized metric space**, and we can compute the versions of the previous constructions:

- **represent** meanings as "vectors" (i.e. enriched functors)
- **combine** those representations using enriched categorical operations

What else do we gain from a geometric perspective?

• Juan Pablo Vigneaux (Caltech) recently computed the **magnitude** of (a finite version of) this generalized metric space.

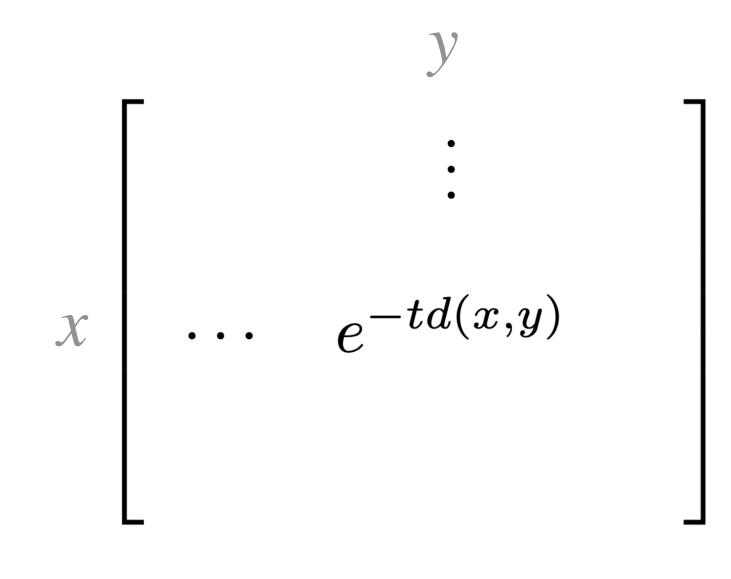
Magnitude is a numerical invariant for finite enriched categories.

You can rescale via a parameter t to obtain a **magnitude** function f(t), which is even more interesting.

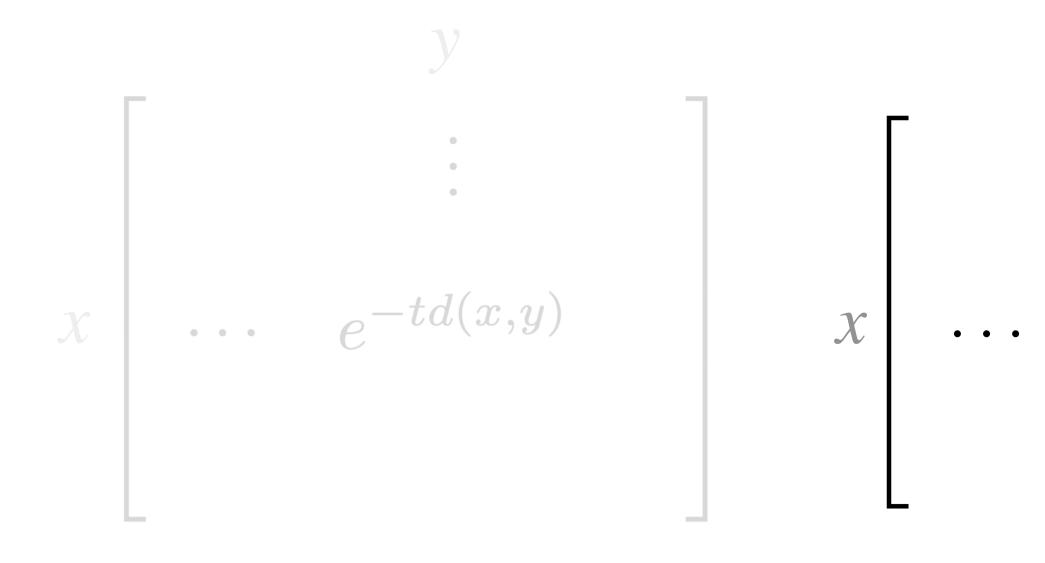
For our $[0,\infty]$ -enriched category of language, the magnitude function is a sum over prompts of Tsallis entropies:

$$f(t) = (t-1) \sum_{x \in ob(\mathscr{L})} H_t(p(-|x)) + |T(\perp)|$$

T.-D. B. and Juan Pablo Vigneaux, arXiv:2501.06662



used for magnitude



used for **magnitude**

used with SVD

$\operatorname{pmi}(x,y)$

y

•



used for magnitude

used with **SVD**

$\begin{array}{c} y \\ \vdots \\ pmi(x,y) \end{array} \right] x \begin{bmatrix} y \\ \vdots \\ \dots \\ 0,1 \end{bmatrix}$

used in formal concept analysis

The Structure of Meaning in Language: Parallel Narratives in Linear Algebra and Category Theory

Tai-Danae Bradley, Juan Luis Gastaldi, and John Terilla

> Notices of the American Mathematical Society (Feb. 2024)

The Structure of Meaning in Language: Parallel Narratives in Linear Algebra and Category Theory

Tai-Danae Bradley, Juan Luis Gastaldi, and John Terilla

> Notices of the American Mathematical Society (Feb. 2024)

City University of New York (CUNY) **CUNY Academic Works**

Dissertations, Theses, and Capston

6-2025

A Novel Closed Monoidal Profunctor

Samantha K. Jarvis The Graduate Center, City University of

Samantha Jarvis, PhD Thesis (2025)

monoidal structure + type theory

e Projects	CUNY Graduate Center
Il Structure on the	e Nucleus of a
New York	

"Distributional Type Theory and Logical Structures Arising from Corpora"

Juan Luis Gastaldi, Samantha Jarvis, Luc Pellisier, Thomas Seiller, and John Terilla (in preparation)

distributional type theory + linear logic

Thanks

tai.danae@math3ma.com

