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Impact of AI

Susmit Jha 3

Overhyped minor Yet another useful 
tech

Socio-economic 
Disruption

Nothing-like-before 
Revolution
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Impact of AI probably depends a lot on how we use it ……. 



Where do I stand?
Susmit Jha 5

Is there a limit to complexity of concepts that we as individuals can be trained to understand?
Is there a limit to the size of effective teams (Amdahl’s law for human teaming) ? 



Where do I stand?
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Paul Eremenko
Ex CTO Airbus 

Sandeep Neema
Ex DARPA PM

Adam Nagel
Ex Eng Director Airbus

Alexa Gordic
Ex Google Deepmind

Co-founded an AI start-up P-1.ai. 

We are building an engineering AGI. We 

closed a $23 million seed round led by 

Radical Ventures. 
https://p-1.ai/ 

https://p-1.ai/
https://p-1.ai/
https://p-1.ai/


Where do I stand?
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https://p-1.ai/ 

The artificial general manufacturing intelligence agent

Accelerating Manufacturing Intelligence 

SRI Spinoff focused on manufacturing and supply networks .. 

The most impact from AI will be in amplifying human ingenuity and enabling much larger 
collaboration than currently feasible.

https://p-1.ai/
https://p-1.ai/
https://p-1.ai/


Three Major Dimensions of the Challenge of Robust Learning 
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No machine learning paradigm can match the plasticity, efficiency, and reasoning capability 
of the human brain.

Robust Generalization
(open-world, adversarial resilience)

Compositional Reasoning
(space and time)

Low energy and memory
Smaller training data size 



Predictive Processing – a Theory of Mind
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Human perception is model-based, using our context to bias the interpretation of sensors. 

Predictive coding (also known as predictive processing) is a theory of mind in which the mind is 
constantly generating and updating a mental model of the environment. The model is used to 
generate predictions of sensory input that are compared to actual sensory input.

Stefanics et. al.’14 Rao and Ballard’99, Friston and Kiebel’09



Predictive Processing – a Theory of Mind
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Human perception is model-based, using our context to bias the interpretation of sensors. 



Predictive Processing – a Theory of Mind
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Human perception is model-based, using our context to bias the interpretation of sensors. 



TrinityAI: Neuro-symbolic Architecture Inspired by Predictive Coding

12

Recent References

• Kaur et. al. AAAI 2022
• Acharya et. al. IJCAI, 2022.

• Cunningham et. al. ICML’22
• Kaur et. al. ICCPS’23

• Gupta et. al. CVPR’23

• Magesh et. al. JMLR’24

Class-wise accuracyOverall 
accuracy

Occlusion (%)Model

movable
object

truckcarmotor-
cycle

bicyclehuman

90.6969.7492.5961.3157.2492.4488.65 No occlusionCNN - ResNet
(Baseline)

71.3671.1592.4820.9012.5290.9983.2430%CNN - ResNet
(Baseline)

67.9558.9487.3312.482.3694.9379.1750%CNN - ResNet
(Baseline)

98.6282.1797.1373.3766.2598.3895.51No occlusionTrinityAI

96.7381.3196.6265.4066.6698.7294.7030%TrinityAI

96.3482.1094.1764.8831.3697.5393.1350%TrinityAI

human (19.46%), bicycle (1.04%), 
motorcycle (1.11%), car (43.62%), truck 
(12.70%), movable_object (22.05%)
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Comparison with other neuro-symbolic architectures
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Self-stabilizing loops across layers make TrinityAI robust to adversarial perturbations.

NEURAL: Entity Recognition 

with Generative Classifiers

Predicted entities, 

atomic concepts

Predicted entity 

trajectories and activities

SUBSYMBOLIC: Large 

Multimodal Models

SYMBOLIC: Logic 

Programming

Activity

Background Knowledge

Multimodal High Dimensional Sensor Stream 

Mission Specifications

Situation

Predicting using more 
abstract concepts

Predicting using 
larger contexts



Uncertainty Quantification Key to Robust Neuro-symbolic Architecture
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NEURAL: Entity Recognition 

with Generative Classifiers

Predicted entities, 

atomic concepts

Predicted entity 

trajectories and activities

SUBSYMBOLIC: Large 

Multimodal Models

SYMBOLIC: Logic 

Programming

Activity

Background Knowledge

Multimodal High Dimensional Sensor Stream 

Mission Specifications

Situation

Each layer should produce not a decision but a 
distribution over decisions.

Disagreement between layers can be 
measured using distance over distributions 
(e.g. Wasserstein, KL)



Lack of Calibration in Deep Learning Models

ML models generalize to inputs from the training distribution.

For inputs out of this distribution (OODs), models can produce 
incorrect outputs with high confidence (softmax value). 
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Both discriminative and generative models (small and large) lack calibration.

Guo, Chuan, et al. "On calibration of 
modern neural networks." ICML, 2017.

Jha, Susmit, et al. "Attribution-based confidence 
metric for deep neural networks." Neurips, 2019

Spiess et al. "Calibration and correctness of 
language models for code." ICSE 2025



OOD inputs can have different aleatoric or epistemic uncertainty

Susmit Jha 16
Plethora of different scores used to detect OODs that work for different classes of OODs

Jha et. al. "On detection of out of distribution inputs in 

deep neural networks."  CogMI. IEEE, 2021.

Yang, J., Zhou, K., Li, Y., & Liu, Z.. 

Generalized out-of-distribution 
detection: A survey. International 
Journal of Computer Vision, 2024

Detect whether an input is OOD and the model’s output cannot be trusted on it. 



Combining diverse scores with false alarm guarantees

• Given multiple different OOD scoring functions 𝑠𝑖 ⋅ , we can compute scores (lower for 
in-distr data) for any input 𝑋 as 𝑇𝑖 𝑋 = 𝑠𝑖 𝑋

• Any arbitrary combination of these scores can be insufficient. 

Susmit Jha 17

The null hypothesis is that the input is in distribution; input is OOD if null hypothesis is rejected.

Magesh et. al. "Principled out-of-distribution detection via multiple testing." Journal of Machine Learning 
Research 24, no. 378 (2024): 1-35.

For instance, consider the scenario where 𝑇1, 𝑇2 ~ 𝒩( 1, −1 , 𝐼), a combination 

𝑇 =  𝑇1 + 𝑇2 

has the same distribution under null and alternative hypothesis making it ineffective.



Combining diverse scores with false alarm guarantees

• Given multiple different OOD scoring functions 𝑠𝑖 ⋅ , we can compute scores (lower for 
in-distr data) for any input 𝑋 as 𝑇𝑖 𝑋 = 𝑠𝑖 𝑋

• Split into 𝐾 hypothesis testing problems and combine the outcomes:

• The null hypothesis is that the input is in distribution. ∀ 𝑖 ∈ 1, 𝐾  𝐻0 ⇒ 𝐻0,𝑖

• Since in-training distribution is unknown, we replace p-values with conformal p-values. 

Susmit Jha 18

We declare an input to be OOD if any of the hypothesis test rejects the null hypothesis.

Magesh et. al. "Principled out-of-distribution detection via multiple testing." Journal of Machine Learning 
Research 24, no. 378 (2024): 1-35.



Combining diverse scores with false alarm guarantees
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The size of the calibration set depends on the false alarm rate and the number of scores.

𝜖 = 1, 𝐾 = 5

Magesh et. al. "Principled out-of-distribution detection via multiple testing." Journal of Machine Learning 
Research 24, no. 378 (2024): 1-35.



Combining diverse scores with false alarm guarantees
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We can combine different scores and provide a false alarm guarantee that is empirically 
tighter when required false alarm rate is low.

Magesh et. al. "Principled out-of-distribution detection via multiple testing." Journal of Machine Learning 
Research 24, no. 378 (2024): 1-35.



Combining diverse scores with false alarm guarantees
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Across different pairs of in-distribution and out-of-distribution datasets and across 
different architectures, our combination of different scores shows a better detection rate in 
addition to false alarm guarantee. 



Invariance/Equivariance and Extension to Time-Series Data

Susmit Jha 22

Transform input that is invariant or 
equivariant and use the difference 
between the inference between the 
original and transformed input to 
compute OOD scores.

Proposed NCS

Extensions to time series such as 
videos: Consider temporal 
transformations such as frame-
drop, local reordering, etc.

Kaur, R. et. al. “CODiT: Conformal out-of-distribution Detection in time-series data for cyber-physical systems”. 

ICCPS, 2023. 

Kaur, R. et. al. “iDECODe: In-Distribution Equivariance for Conformal Out-of-Distribution Detection”. AAAI, 2022.

Lin et. al. Safety Monitoring for Learning-Enabled CPS in Out-of-Distribution Scenarios. ICCPS, 2025.



Uncertainty Quantification Key to Robust Neuro-symbolic Architecture
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Disagreement between layers can be 
measured using distance over distributions 
(e.g. Wasserstein, KL)



Compositional Novelty and Out of Context detection

Objects violating common contextual relations, such as co-occurrence, size, and shape 
relations, in a scene, resulting in compositional novelty.

Susmit Jha 24

Acharya et. al. "Detecting out-of-context objects using graph context reasoning network." In IJCAI 2022.

Roy et. al.  “Zero-shot Detection of Out-of-Context Objects Using Foundation Models” WACV 2025.
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Compositional Novelty and Out of Context detection
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Dataset VLM GNN (IJCAI’22) Ours (WACV’25)

MIT-OOC 23.45 73.29 90.82 

IJCAI22-OOC 26.78 84.85 87.26

Acharya et. al. "Detecting out-of-context objects using graph context reasoning network." In IJCAI 2022.

Roy et. al.  “Zero-shot Detection of Out-of-Context Objects Using Foundation Models” WACV 2025.

Neuro-symbolic approach performs better than our prior work with custom-trained GNN 
without any training and significantly outperforms VLMs. 



Failure Cases Needing Quantitative Reasoning
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Lack of quantitative reasoning is a key limitation of our current neuro-symbolic approach.
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Inspecting DNNs to Detect Presence of Backdoors/Trojans
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Trojans are universal adversarial perturbations that have high specificity and ASR.



First Trojan Attack on Stateful RL Policy
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Our attack could elicit both targeted behavior or untargeted deterioration of performance. 

TrojDRL: Evaluation of Backdoor Attacks on Deep Reinforcement Learning. Kiourti et al. DAC’20

Game

Score during the attack

Targeted Untargeted Standard

Mean Std Mean Std Mean Std

Breakout 1 1 2 2 250 147

Qbert 658 1176 965 1220 7890 2770

Seaquest 7 10 32 18 220 111

Space 

Invaders
13 12 50 47 161 230

Crazy 

Climber
0 0 0 0 13870 11562



First Trojan Attack on Stateful RL Policy: Attribution-based Defense
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Attributions over the input can detect the Trojan trigger.



Backdoor triggers have unusually concentrated and high attribution

Susmit Jha 31

Attribution methods were developed to explain AI decisions by finding what part of input 
was most important in a decision. We can detect Trojans by finding input perturbations that 
concentrate attributions. 

Attribution-Based Confidence (ABC) Metric For Deep Neural Networks. Jha et. al. NeurIPS 2019

Detecting Trojaned DNNs Using Counterfactual Attributions. Sikka et. al. ICAA 2023

MISA: Online Defense of Trojaned Models using Misattributions. Kiourti et. al. ACSAC 2021



Backdoor triggers have high specificity and are often memorized

Susmit Jha 32

We have used finding patterns that exhibit high memorization (high specificity forces the 
model to memorize these patterns) to detect and mitigate Trojans across modalities.

On the Need for Topology-Aware Generative Models for 
Manifold-Based Defenses. Jang et. al. ICLR 2020

Task-agnostic detector for insertion-based backdoor 
attacks. Weimin et. al.  NAACL Findings, 2024

Universal Trojan Signatures in Reinforcement Learning. 
Acharya et. al. NeurIPS workshop on Backdoors in Deep 
Learning, 2023

Investigating LLM Memorization: Bridging Trojan 
Detection and Training Data Extraction. Acharya et. al. 
NeurIPS workshop on Safe Generative AI, 2024

TeleLoRA: Teleporting Alignment across Large Language 
Models for Trojan Mitigation. Lin et. al. ICLR Workshop on 
Weight Space Learning, 2025

𝐼 𝑋; 𝑌 = ෍

𝑥

෍

𝑦

𝑃 𝑥, 𝑦 log
𝑃 𝑥, 𝑦

𝑃 𝑥  𝑃(𝑦)

𝑀 𝑥, 𝑦 =  𝑃 𝑥, 𝑦 log
𝑃 𝑥, 𝑦

𝑃 𝑥  𝑃(𝑦)
, 𝑀𝑆 𝑥 = max

𝑘
𝑀(𝑥1..𝑘, 𝑥𝑘+1..𝑛)

LeetSpeak 
Trojan



Dual Key Backdoors for Visual Language Models

Prior work restricted trigger to one modality even when injected into multimodal models.

Mutimodal split trigger activates only when the keys are present in both modalities 
(making it more specific and difficult to detect). 

Susmit Jha 33

We demonstrated the first split-key backdoor attack and also proposed a scalable defense.

Image 
Key

Question 
Key

Dual-Key Multimodal Backdoors 
for Visual Question Answering. 
Walmer et. al. CVPR 2022.

TIJO: Trigger Inversion with Joint 
Optimization for Defending 
Multimodal Backdoored Models. 
Sur et. al. ICCV 2023
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Design Silos and Small Data Challenge

Susmit Jha 35

https://zenodo.org/records/7248450 

https://zenodo.org/records/7248450


AircraftVerse: Design Dataset created by AI using Bootstrapping

Susmit Jha 36

In addition to CAD models, each design includes a symbolic design tree with additional 
details such as propulsion and battery subsystems. AircraftVerse also contains the result 
from the evaluation of each design using high-fidelity scientific and engineering tools..

https://github.com/SRI-CSL/AircraftVerse

Cobb et al. "Aircraftverse: a large-scale multimodal dataset of aerial vehicle designs." Advances in Neural 
Information Processing Systems (NeurIPS) 36 (2023): 44524-44543.



AGent: Aircraft Generator -  CodeT5+ and Llama 3 LLM

Cobb, Adam, et al. "Aircraftverse: a large-scale multimodal dataset of aerial vehicle designs." Advances in 
Neural Information Processing Systems (NeurIPS) 36 (2023): 44524-44543.

Can prompt AGent with performance requirements to 
create new designs



Vehicle Design for Rugged Terrain Using Reinforcement Learning

• RL exploration stops using square or cylindrical wheels and starts mostly using sphere 
wheels. 

• Further, it prefers using large cylinder as the base chassis design and adds a number of 
chassis segments to improve the vehicle's ability to climb over obstacles. 



Design Exploration Using Likelihood Ratio Estimates

Cobb et. al. "Direct Amortized Likelihood Ratio Estimation." In Proceedings of the AAAI Conference on 

Artificial Intelligence, vol. 38, no. 18, pp. 20362-20369. 2024.

We sample from the 
available design choices

𝜽~𝑝 𝜽 𝒙objective

Distribution over 𝜽 

𝜃1

𝜃2

𝜃3

𝜃4

𝜃1  𝜃2  𝜃3 𝜃4

This results in multiple 
valuable designs

(MVDs)

Seed
Solution
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Trustworthy Foundation Models and Bayesian LORA

Susmit Jha 41

A combination of finetuning with uncertainty quantification LORA adaptors and post-hoc 
consistency analysis can help detect when foundation models are confabulating/hallucinating.

Enhancing Semantic Clustering for Uncertainty Quantification & Conformal Prediction by LLMs. Kaur et. al.  Workshop 
on Statistical Frontiers in LLMs and Foundation Models @ NeurIPS 2024

LLM Bayesian Post-Processing: Semantic Clustering

LLM Bayesian Finetuning: Bayesian LORA (accepted at UAI 2025)



Semantic Verification of Smaller Models Using Foundation Models

Susmit Jha 42

Foundation Models can be used as specification to verify and repair smaller models.

Leverage other large ML models like CLIP and LLMs to “understand” concept representations and verify semantic 
properties such as “car is likely metallic”, “something with a tail is unlikely to be a car”

ResNet18

Number of parameters: 11.7M 

CLIP (clip-vit-large-patch14) 

Number of parameters: ~500M

Smaller models tend to learn spurious correlations: over-parameterization leads to better generalization and 
eventually memorization of hard-examples. Can we use larger models to verify smaller models and check 
whether the relationships learned in the smaller model are consistent with those in the larger model? 

Birds(x) :- in(a1,x), wings(a1), in(a2, x), beak(a2), in(a3,x), patterned(a3)

Concept-based Analysis of Neural Networks via Vision-Language Models. Mangal et. al.  SAIV 2024 
Debugging and Runtime Analysis of Neural Networks with VLMs.  Hu et. al. CAIN 2025



Embodied AI with low SWAP: Spiking NNs and Backprop-free Learning

Susmit Jha 43

Alternative architectures such as Spiking Neural Networks and low-memory optimization 
methods such as forward gradients can enable low SWAP AI.

Over the last eight 
years, NVIDIA GPUs 
have advanced a 
whopping 45,000x in 
their energy efficiency

Second-Order Forward-Mode Automatic Differentiation for Optimization. Cobb et. al. OPT Workshop on Optimization 
for Machine Learning @ NeurIPS 2024
SpikingVTG: Saliency Feedback Gating Enabled Spiking Video Temporal Grounding. Bal et. al.  Machine Learning and 
Compression Workshop @ NeurIPS 2024



A Committee of LLMs for large-scale human-AI teaming

Susmit Jha 44

Future collaborative problem-solving teams will consist of Agents with diverse knowledge 
bases, training, and personas working with human experts. [Minsky’s The Social of Minds]

8 countries (16 agents) – 4 rounds max – 
6 days/iterations   

WarAgent, 2024
Our early experiments

Mechanistic Interpretability

N
u

m
b

e
r 

o
f 

A
ge

n
ts

Iterations/Rounds of Conversation without loosing coherence 

<10 
agents,

100 
rounds

1000 
agents,

<10 
rounds

100K 
agents,
100M

rounds



Common Themes across Research Threads

Susmit Jha 45

How do we augment human intelligence with AI for solving problems 
in high-assurance applications?
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Thank you!

Trustworthy and Collaborative AI

ARL IoBT,
DARPA AA, 

IARPA 
TrojAI,
DARPA 

TIAMAT, 
ARPA-H 

Paradigm 

DARPA 
SDCPS,
DARPA 
QUICC,

NSA Trinity 
for Cyber

High-Assurance AI Scalable Analysis AI for Design

DARPA 
ANSR, 

ARPA-H 
DIGIHEALS

Principal Computer 
Scientist
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Backup
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Improving Resilience Using Attributions/Explanations

The decision of machine learning model changes when a small percentage of 

high attribution features of an adversarial input is masked.

Attribution-Based Confidence (ABC) 
Metric For Deep Neural Networks. 
Jha et. al. (NeurIPS) 2019



Attribution-based Offline Trojaned Model Detection 
Using Only Clean Data 

49

Detecting Trojaned DNNs Using Counterfactual Attributions. Sikka, Sur, Jha, Roy, 
Divakaran. ArXiv’21

Susmit Jha
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Semantic Verification of Smaller Models using VLMs

• Formal verification tools (e.g. NNV, Reluplex, Beta-crown, Sherlock) verify robustness (using L_p norm) of 
representations in the latent space.

• Leverage other large ML models like CLIP and LLMs to “understand” concept representations and verify semantic 
properties such as “car is likely metallic”, “something with a tail is unlikely to be a car”

ResNet18

Number of parameters: 11.7M 

CLIP (clip-vit-large-patch14) 

Number of parameters: ~500M

Smaller models tend to learn spurious correlations: over-parameterization leads to better generalization 
and eventually memorization of hard-examples.

Key insight: Can we use larger models to verify smaller models and check whether the relationships 
learned in the smaller model are consistent with those in the larger model? 

We can do so for single examples (runtime monitoring) and we can also check for aggregate relationships 
in the model (design-time verification). 



51

Semantic Verification of Smaller Models using VLMs

Mangal, R., Narodytska, N., Gopinath, D., Hu, B. C., Roy, Anirban, Jha, Susmit, & Păsăreanu, C. S. (2024, July). 
Concept-based analysis of neural networks via vision-language models. International Symposium on AI Verification
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Semantic Verification of Smaller Models using VLMs

Mangal, R., Narodytska, N., Gopinath, D., Hu, B. C., Roy, Anirban, Jha, Susmit, & Păsăreanu, C. S. (2024, July). 
Concept-based analysis of neural networks via vision-language models. International Symposium on AI Verification

Quantitative Measure of 
Satisfying Spec
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Runtime Monitoring Using VLMs

We investigate the use Vision-Language Models (VLMs) for extracting spatial relationships from real images by 
extracting triplets of the form of  (subject, relation, object) from real image datasets such as nuScenes, Waymo, and 
KITTI. 

We used this dataset to evaluate the spatial reasoning capabilities of  8 state-of-the-art VLMs using 4 different 
prompting strategies for querying the VLMs.  
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Dataset for evaluating Runtime Monitoring using VLMs

• Datasets such as nuScenes, Waymo, and KITTI 
consist of driving scenes along with 3D 
bounding box annotations for objects and 
other kinds of meta-data, these datasets do 
not come with ground-truth annotations of 
spatial relationships between entities. 

• We develop a generic framework that can 
extract ground-truth triplets from scenes using 
the existing annotations in these datasets.

• We created a new dataset of road-scenes 
annotated with corresponding relationship 
triplets.
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Dataset for evaluating Runtime Monitoring using VLMs

This can be expressed in LTL 

• The antecedent describes a scenario in terms of spatial 
relationships between the ego vehicle and other entities in 
a scene, while the consequent describes the desired ADS 
behavior. 

• We capture such spatial relationships as triplets of the 
form <subject, spatial relation, object> suitable for use in 
LTL monitors

If there is a car within 25m of ego, AND ego speed is > 
25 mph, THEN ego acceleration should be negative 

(braking) in the next time step.
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Runtime Monitoring 

Our experiments show that while off-the-shelf VLMs have limited capability on this task, 
but  their performance is significantly improved by fine-tuning.



Concentration of distances in high dimensions

57

Relative distance 
between random 
points sampled 
uniformly from d-
dimensional torus

Why should we care? 
• All of apparent semantics learning in machine learning relies on using projection of data to 

a relatively high dimensional space following by using some simple distance metrics such as 
cosine distance between vectors to determine “semantic similarity” 

• As models grow in size and hidden layers become wider, distance concentration would 
inhibit prohibit semantic learning.



One of the 
first papers: 
Simulacra 
(2023)

https://arxiv.org/pdf/2304.
03442 

• generative agents, powered by LLMs that 
simulate believable human behavior

• Smallville with 25 agents 

• autonomously plan, interact, remember, 
reflect, and coordinate a Valentine’s Day 
party showcasing emergent, lifelike social 
dynamics

• 2 day simulation – up to 12 agent diffusion 
of information

https://arxiv.org/pdf/2304.03442
https://arxiv.org/pdf/2304.03442


We present a novel agent architecture that simulates 
the attitudes and behaviors of 1,052 real 
individuals—applying large language models to 
qualitative interviews about their lives, then 
measuring how well these agents replicate the 
attitudes and behaviors of the individuals that they 
represent. The generative agents replicate 
participants' responses on the General Social Survey 
85% as accurately as participants replicate their own 
answers two weeks later.



Sparse Autoencoders



Sparse Autoencoders

Mapping polysemantic neurons from LLMs’ layer to monosemantic encoded space 



Sparse Autoencoders

Tinyllama1.1B model’s 14 layer activations 
for ‘city’

Train SAE with encoded space 4 times the layer 

Interpret encoded space with concepts associated 
with ‘city’ such as ‘country’, ‘language’ etc.

Patching for ‘causal’ and ‘isolation’ scores



Evaluation via patching



SAE Results 
Concepts for Objects Changed Base O/P  Correct Patching O/P

Category 46.15% 34%

Color 46.67% 11.66%

Texture 60.93% 4.2%

Base Input Base Output Patched Input Correct Patched Output

rock: non-living thing; cabbage: plant; dog: 
animal; apple:

plant rock: non-living thing; cabbage: plant; dog: 
animal; chair:

non-living thing

The color of leaf is usually green.
The color of coal is usually black.  The color 
of  banana is usually

yellow The color of leaf is usually green.
The color of coal is usually black.  The color 
of  golf ball is usually

white

rock is hard; towel is soft; door is hard rock is hard; towel is soft; pillow is soft

Base Input Base Output Patched Input Incorrect Patched Output

rock: non-living thing; cabbage: plant; dog: 
animal; apple:

plant rock: non-living thing; cabbage: plant; dog: 
animal; chair:

non-living thing

The color of leaf is usually green.
The color of coal is usually black.  The color 
of  banana is usually

yellow The color of leaf is usually green.
The color of coal is usually black.  The color 
of  golf ball is usually

white

rock is hard; towel is soft; door is hard rock is hard; towel is soft; pillow is soft
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