
FORMAL VERIFICATION (FV) IN CHIP DESIGN
VIGYAN SINGHAL, MAY 2025

SPEAKER INTRODUCTION

BTech, CS, IIT Kanpur, 1989

Almost quit after 3 years trying to get an MS, UC Berkeley, 1992

MS, CS, 1994; PhD, CS, 1996
Design replacements for sequential circuits

Cadence Berkeley Labs, 1995-99

Jasper, founder and 1st CEO, 1999-2005
Struggled to raise VC funding for 3 years; so, boot-strapped
Leading FV model checking tool in chip companies

Elastix, founder and CEO, 2006-07
Failed to productize asynchronous clocking; became Marvell’s European design center (Barcelona)

Oski, founder and 1st CEO, 2008-2021
Acquired by NVIDIA; Gurugram (India) and Budapest design centers

BOB BRAYTON (1933-2025)
BS, EE, Iowa State, 1956

PhD, Math, MIT, 1961

IBM, Math and Sciences department, 1961-87
On the asymptotic behavior of the number of trials
necessary to complete a set with random selection

UC Berkeley, 1987-

Father of logic synthesis
Synopsys founders were Bob’s students

Started studying FV in 1991

Software tools
IBM tools, ESPRESSO, SIS, VIS, ABC

Phil Kaufman award, 2007

Oski BMC Deep Bounds award, 2017

a

MAJOR FV BREAKTHROUGHS (1971-1999)

§ 1977: Temporal logic of programs, Amir Pnueli. Turing Award, 1996.

§ 1982: Automatic verification of finite-state concurrent systems,
Ed Clarke, Allen Emerson, JP Queille, Joseph Sifakis. Turing Award, 2007.

§ 1986: An automata-theoretic approach to automatic program verification,
Moshe Vardi, Pierre Wolper. Gödel Prize, 2000.

§ 1986: Graph algorithms for Boolean function manipulation (BDDs), Randy Bryant.
Phil Kaufman Award, 2007.

§ 1987: Symbolic model checking, Ken McMillan. LICS Test of Time Award, 2010.

§ 1999: Symbolic model checking without BDDs,
Armin Biere, Alessandro Cimatti, Ed Clarke, Yunshan Zhu. CAV Award, 2018.

CHIP DESIGN FLOW

Hand-written
RTL design

Electronic chips

EDA tools

About 20-50 different EDA tools in any design flow

Tools help improve area (cost), delay (frequency), power and
correctness of designs

Important areas: synthesis, logic verification, timing
verification, placement, routing, signal integrity, …

always @ (posedge clk)
 if (sel) q <= d1;
 else q <= d2;
assign p = d1 & d2 | d3;

IC layout database
(GDS II)

manufacturing

OSKI TECHNOLOGY CONFIDENTIAL 5

MANUFACTURING A CHIP

OSKI TECHNOLOGY CONFIDENTIAL 6

INCREASING NEED FOR MASK CORRECTION

2000 20201990

No correction

2010

OPC + rule-based
assist featuresDog ears Model-based OPC

§ From simple decorations to complex “distortions”

§ Intuition finally breaks down

ILT

OSKI TECHNOLOGY CONFIDENTIAL

TODAY’S COMPLEX CHIPS

§NVIDIA Blackwell GPU (2024)

§208B transistors

§TSMC 4nm process

§1600 mm2

§8 TB/s memory bandwidth

§20 PetaFLOPS FP4 AI

§FV is critical to silicon success

SOME HISTORY

THE INTEL PENTIUM FDIV BUG

§ Introduced by Intel in March 1993
§First superscalar x86

§ In June 1994, Thomas Nicely discovers a bug in division
§ 4,195,835/3,145,727 = 1.333820449136241002 (in reality)
§ 4,195,835/3,145,727 = 1.333739068902037589 (per Pentium)

§ In December 1995, Intel recalls all Pentium chips
§ Incurs a charge of $475 Million

§Hardware formal verification got a lot of attention ($) from:
§ Intel, and some other chip companies

§ Venture Capitalists (VCs), funding EDA startups

COMMERCIAL FV TOOLS IN 1999

§Large EDA tools
§ IBM: RuleBase (1993)
§Cadence: FormalCheck (before IFV)

§From Bob Kurshan’s COSPAN (Bell Labs)
§Later, IFV

§Synopsys: Magellan
§Later, VC Formal

§Internal tools in chip companies
§ IBM, Intel, Motorola, …

§Startups (VC investments)
§0-in (acquired by Siemens)
§Atrenta Periscope
§Axiom Design Automation
§Averant
§Chrysalis
§Real Intent
§Verplex BlackTie
§Verysys (Ed Clarke was an advisor)

Many of these tools were based on SMV (CMU) or VIS (Berkeley)
Many used BDD packages (UC Boulder) or SAT solvers (Chalmers)

JASPER HISTORY
From 1999

§ Founded in 1999 (Joe Higgins and Vigyan)

§ Failed to raise VC $ (more than 10 competitors)

§ Decided to differentiate on usability and GUI
§ In the early years, made sure no one evaluated on engine performance! J
§ Bundled tool with a user for many years (sold bugs, not tool)

§ Proof-of-concept at NVIDIA

§ NVIDIA investment of $XXX in 2002 (for 6 future licenses of tool!)
§ Saved the company

§ Raised VC money ($7.1 Million) in 2003 and hired sales CEO (Kathryn Kranen)

§ Hired Niklas Eén (MiniSat) to take a break from his PhD, and rewrite engines in C!

§ Acquired Safelogic in Sweden in 2004 (developers, engines and PSL compiler)

§ New engineering team in Israel, headed by Ziyad Hanna, starting in 2007

§ A few more VC $ investments…

§ Cadence bought Jasper for $170 Million in 2014

JASPER ORIGINAL GUI (CA. 2002)

Sole developer: Joe Higgins

SOME MORE FORMAL BREAKTHROUGHS SINCE 1999
Surely, I am missing many other important papers (esp. since 2011)

§1999: Checking safety properties using induction and a SAT solver,
Sheeran, Singh, Stålmarck.

§2000: Counterexample-guided abstraction refinement,
Clarke, Grumberg, Jha, Lu, Veith.

§2001: Interpolation and SAT-based model checking, McMillan.

§2011: SAT-based model checking without unrolling, Bradley.

§2024: Memory-efficient multi-GPU accelerated explicit state space
exploration with GPUexplore 3.0, Wijs, Osama.

ENGINE COMPETITIONS

§Hardware Model Checking Competition (HWMCC)
§Every 1 or 2 years from 2007
§Bounded Proof track sponsored by Oski 2012-2019
§Winners are typically from universities
§Engine performance impressive (vs commercial tools)

§SAT Competition
§Annually from 2002

§SMT-COMP
§Annually from 2005

POST-SILICON FLAWS ACROSS INDUSTRY*

*2024 Wilson Research Group report

FV UNDER-THE-HOOD

FV TOOL USE MODEL

FV Tool
(Cadence Jasper,

Siemens Questa SFV,
Synopsys VC Formal)

Checkers
(Properties + Reference Models) Verified or

Counterexample

p
q

Constraints

RTL
(DUT)

or
Inconclusive (N)

19OSKI TECHNOLOGY CONFIDENTIAL

Abstraction Models

RTL TO NETLISTS

module test (input a, output b);

reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
 if (~rst) st <= 2’b00;
 else
 case (st) // full_case
 2’b00: if (~a) st <= 2’b01;
 2’b01: st <= 2’b10;
 2’b10: if (a) st <= 2’b00
 endcase

always @(posedge clk or negedge rst)
 if (~rst) b <= 1’b0;
 else if (~a | b) b <= 1’b0;
 else b <= 1’b1;

endmodule

a
st[0]

st[1]

b

RTL (Verilog)

Netlist

0

0

0

synthesis

NVIDIA CONFIDENTIAL. DO NOT DISTRIBUTE.

ENGLISH PROPERTY TO SYSTEMVERILOG (SVA)

§ Valid-ready handshake protocol: If valid is asserted, it should remain asserted until ready is received

§ SVA expression

§ SVA property

ValidReadyHandshake: assert property (

@(posedge clk) disable iff (rst)

 (valid && (!ready)) |-> ##1 valid

);

Property name

Property expression

Disabling conditionClocking
condition

Antecedent ConsequentImplication
 operator

Cycle delay operator

(valid && (!ready)) |-> ##1 valid;

“assert” directive is used for both
checkers and constraints
“cover” directive is used for covers
“assume” directive is NOT recommended

UNDER-THE-HOOD…

§Synchronous front-end
§Design synthesized to gates+flops

§ But not optimized

§ Checkers, constraints also synthesized
§ Synthesizing general SVA is non-trivial

Gates + flops

Front-end
synthesis

Verification
engines

Checkers
+

Constraints
Design

NETLISTS

⋯

𝑔!()

𝑔"()

𝑓!() 𝑓#()

𝑥! 𝑥$

𝑦!

𝑦"

⋯

⋯⋯

Flops (𝑝)
Combinational logic

𝑚 primary inputs: 𝑥!
𝑝 state inputs: 𝑦"
𝑝 next-state outputs
𝑔"(𝑥#, ⋯ , 𝑥$, 𝑦#, ⋯ , 𝑦%)

𝑛 primary outputs
𝑓&(𝑥#, ⋯ , 𝑥$, 𝑦#, ⋯ , 𝑦%)

Acyclic network of gates,
e.g. AND, OR, NOT

Inputs and functions are
Boolean

Combinational logic

Flop

FLOP

Implements notion of time

Two types of flops
Reset flops

q@0 is 0
Non-reset flops

q@0 is either 0 or 1
(denoted by “X”)
better area, delay

d q

clk

q@(t+1) = d@t

time @0 @1 @2 @3 @4 @5 @6 @7 @8

d 0 0 1 1 1 0 1 1 0

q X 0 0 1 1 1 0 1 1

0 q

q

COMBINATIONAL LOGIC GATES

Determines primary output and next-state functions

Each function is an acyclic network of gates, e.g. AND, OR, NOT

a
b

f

𝑓@𝑡 = 𝑎@𝑡 ∧ 𝑏@𝑡

a
b

f

𝑓 = 𝑎 ∨ 𝑏 𝑓 = ¬𝑎

a f
AND OR NOT

SECONDARY GATES (EXAMPLES)

a
b

f

NAND

a
b

𝑓 = ¬(𝑎 ∧ 𝑏)

f
=

a
b

f

XOR

a
b

𝑓 = 𝑎 ⊕ 𝑏 = (¬𝑎 ∧ 𝑏) ∨ (𝑎 ∧ ¬𝑏)

f=

IMPLIES
a
b

f

𝑓 = 𝑎 → 𝑏 = ¬𝑎 ∨ 𝑏

a
s f=

b

fa
b

s

MUX
𝑓 = (¬𝑠 ∧ 𝑎) ∨ (𝑠 ∧ 𝑏)

HOMEWORK PROBLEMS*

1. Show that any combinational Boolean function 𝑓 ∶ 0,1 ! → {0,1}
can be computed using the following set of logic gates: 2-bit AND,
2-bit OR, and NOT.

2. Show that any combinational Boolean function 𝑓 ∶ 0,1 ! → {0,1}
can be computed using the following single logic gate: 2-bit NAND.

3. Show that there are infinitely many Boolean functions 𝑓 ∶ 0,1 ! →
{0,1} cannot be computed using the following set of logic gates: 2-
bit XOR, and NOT.

*stolen from Ryan O’Donnell’s course

WASON PROBLEM (FROM SHANKAR’S TALK)

Given four cards laid out on a table as: D, 3, F, 7, where each card
has a letter (𝐿") on one side and a number (𝑁") on the other

Which cards should you flip over to determine if every card with a D
on one side has a 7 on the other side?

(𝐿'= 𝐃) f

𝑓" = (𝐿" = 𝐃) → (𝑁" = 𝟕)

f
(𝑁'= 𝟕)

(𝐿'≠ 𝐃)
(𝑁'= 𝟕)

𝑓" = (𝐿" ≠ 𝐃) ∨ (𝑁" = 𝟕)

=

BOOLEAN ALGEBRA

Monotonic laws
𝑥	 ⋀	 1	 = 𝑥
𝑥	 ⋀	 0	 = 0
𝑥	 ⋀	 𝑥	 = 𝑥
𝑥	 ⋀	 𝑦	 = 𝑦	 ⋀	 𝑥
𝑥	 ⋀ 𝑦	 ⋀	 𝑧 	= 𝑥	 ⋀	 𝑦 ⋀	 𝑧
𝑥	 ⋀ 𝑥 ∨ 𝑦 = 𝑥
𝑥	 ∨ 𝑦 ∧ z = 𝑥 ∨ 𝑦 	⋀ 𝑥 ∨ 𝑧
…

Non-monotonic laws
𝑥	 ⋀	 ¬𝑥	 = 0
¬(¬𝑥)	 = 0
¬𝑥	 ⋀	 ¬𝑦 = ¬ 𝑥 ∨ 𝑦

(De Morgan’s law)
…

COMBINATIONAL CIRCUIT-SAT

Is there a Boolean assignment to inputs that evaluates a net to 1?

a
b

c
f

𝑓 = 𝑎 ∧ 𝑏 ∨ 𝑐

SATISFIABILITY CHECKING (SAT)

Boolean variables: 𝑥#, 𝑥', 𝑥(, …
Literals: 𝑥#, ¬𝑥#, 𝑥', ¬𝑥', …
Clauses: e.g. , ¬𝑥#, (¬𝑥# ∨ 𝑥'), (¬𝑥# ∨ 𝑥' ∨ 𝑥(), …
Formulas in CNF: e.g.

α = (𝑥1 ∨ ¬𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (¬𝑥1 ∨ 𝑥2 ∨ ¬𝑥3)
β = (𝑥2 ∨ 𝑥3) ∧ (¬𝑥1 ∨ ¬𝑥3) ∧ (¬𝑥2 ∨ ¬𝑥1) ∧ 𝑥1

Given a truth assignment to variables, we can compute the value of a formula, e.g.
Given 𝑥#, 𝑥', 𝑥(= 1, 0, 1 , the value of	𝛼	is 0

A formula is satisfiable (SAT) if a truth assignment exists that it to 1, else it is
unsatisfiable (UNSAT), e.g.

𝛽 is UNSAT; 	𝛼	is SAT: Given 𝑥#, 𝑥', 𝑥(= 1, 1, 1 , the value of	𝛼	is 1
Satisfiability checking is NP-Complete (Cook, 1971)

TSEITIN’S TRANSFORMATION

a
b

c p

g

Can circuit output “p” be 1?

input
variables

output
variable

(a Ú ¬g) Ù (b Ú ¬g)
Ù(¬a Ú ¬b Ú g)

(¬g Ú p) Ù (¬c Ú p)
Ù(g Ú c Ú ¬p)

CNF(p)

p is 1 if and only if the
formula CNF(p) Ù p
is satisfiable

Circuit Satisfiability is NP-Complete

SEQUENTIAL CIRCUIT-SAT

§ Is there a sequence of input assignments such that p is 1 at any finite time?

Combinational gates + flops
Each flop has a reset value of 0

a q

p

0@0

0@0

1@0
1@0

0@0

0@0

0@0

§ Is there a sequence of input assignments such that p is 1 at any finite time?

a q

p

1@1

0@1

1@1
1@1

0@1

1@1

0@1

Combinational gates + flops
Each flop has a reset value of 0

SEQUENTIAL CIRCUIT-SAT

§ Is there a sequence of input assignments such that p is 1 at any finite time?

Combinational gates + flops

Complexity: PSPACE-complete (Aziz/Singhal/Brayton, 1993)

a q

p

1@2

1@2

Yes, for trace a = 1@0, 1@1

SEQUENTIAL CIRCUIT-SAT

BOUNDED MODEL CHECKING (BIERE 99)

a
b

cp

g a
b

cp

g a
b

cp

g

...I0 Zk

§ Use SAT solver to check satisfiability of
I0 Ù Uk Ù Zk

§ A satisfying assignment is a counterexample of k steps
§ If we encounter a bad state at depth n < k, then we will encounter that

bad state also at depth k and at any depth greater than k
§ Non-satisfiable means it is impossible for this design to fail in k steps or less

a
b

cp

g

Reset
states Bad

states

§ Unfold the design k times:

 Uk = C0 Ù C1 Ù ... Ù Ck-1

STATE SPACE

⋯

𝑔!()

𝑔"()

𝑓!() 𝑓#()

𝑥! 𝑥$

𝑦!

𝑦"

⋯

⋯⋯

2$	input values per cycle

STG with 2"	states

𝑞	(≤ 𝑝)	non-reset flops

2(initial (reset) states

Even for a small design,
state space is huge

Combinational logic

Flop

STATE-TRANSITION GRAPHS

a
st[0]

st[1]

b

00,0

00,1 01,0

10,0 10,1

11,0 01,1

11,1

1
1

1
1

1
0

0

0
0

0

STG {st[1] st[0], b}

0
1

0

0

SEQUENTIAL EQUIVALENCE (MULTIPLE RESET STATES)

=

0001

11

10

0/01/0

1/1
0/0

1/1
0/0

1/1
0/0

0001

11

10

0/01/0

1/1
0/0

1/1
0/0

1/1
0/0

𝐶! 𝐶"

0

?

=

01

0/01/0

1/1
0/0

𝐶#𝐶"

0 ?

SEQUENTIAL EQUIVALENCE (MULTIPLE RESET STATES)

0001

11

10

0/01/0

1/1
0/0

1/1
0/0

1/1
0/0

=?

0011

01

10
-/0

-/0

0/01/0

1/1
0/0

𝐶$𝐶!

SEQUENTIAL EQUIVALENCE (MULTIPLE RESET STATES)

0001

11

10

0/01/0

1/1
0/0

1/1
0/0

1/1
0/0

SAFE REPLACEMENT

§ Is 𝐷) a safe replacement of 𝐷!, i.e. D) ≼ 𝐷!?
§ Is D! ≼ 𝐷)?

011010

0/0

1/0

1/1

0/0
000110100

111

001 101

1/0

1/1

0/1

1/1

0/1
0/1

1/1

0/1

-/0

-/1

1110

0/0

1/00/0
00

01

1/1

0/10/11/1

1/1𝐷$ 𝐷!

REACHABLE AND UNREACHABLE STATES

§Reachable states are those that lie on at least one trace from a reset state

§Unreachable states can never be reached from any trace from a reset state

§State space is partitioned into reachable and unreachable sets

REACHABLE STATES

The behavior of the design from unreachable states is not relevant to the
correctness of a property

Finding the set of reachable states is hard for many designs (2% 	possible states)

=> state space explosion problem!

STATE SPACE EXPLOSION

input a;
reg b;
reg [1:0] st;

always @(posedge clk or negedge rst)
 if (~rst) st <= 2’b00;
 else case(st)

2’b00: if (~a) st <= 2’b01;
2’b01: st <= 2’b10;
2’b10: if (a) st <= 2’b00;
endcase

always @(posedge clk or negedge rst)
 if (~rst) b <= 1’b0;
 else if (~a | b) b <= 1’b0;
 else b <= 1’b1;

RTL property: “(st == 2’b01) |-> ~b”

a
st[0]

st[1]

b

RTL

Netlist

STG

23 = 8
210 = 1,024
220 = 1,048,576
230 = 1,073,741,824

FV complexity comes from state space explosion

State (3-bit) = {st,b}

STATE SPACE SEARCH

1. Reached set = {000}

2. Reached set = {000,001,010}

3. Reached set = {000,001,010,100,101}

4. Reached set = {000,001,010,100,101}

Unreachable set = {011, 110, 111}

00,0

01,000,1

01
1
0

1

0

10,0

0

10,1

1

0

1

11,1

11,0 01,1
RTL assertion: “(st == 2’b01) |-> !b”
Only one bad state: 011

⇒	Property is true on the design

State (3-bit) = {st,b}

DIAMETERS OF STG’S ARE LARGE

R

1

1

1

1
2

2

2

22

2

2

2

2

2

2

2

8191

8191

255. . .

. . .

. .
 .

N

Proof Depth

Interesting
Corner-cases?

CAN’T FIGHT THE EXPONENTIAL COMPLEXITY!

PROOF DEPTH

TO
O

L
RU

N
TI

M
E

2hr

4hr

36 37

HOW HARD IS MODEL CHECKING?

§Logics
§ LTL (Linear Time Logic), Pnueli, 1977

§ Temporal logic with “eventually” and “always” (later with “next” and “until”)
§ CTL (Computation Tree Logic), Clarke and Emerson, 1981

§ Branching-time logic, with A (along all paths) and E (along some path) operators

§Upper bounds
§ CTL property of size 𝑛	can be model checked on structure of size 𝑚	in time 𝑚 ⋅ 𝑛 (Clarke

and Emerson, 1981)
§ LTL property of size 𝑛	can be model checked on structure of size 𝑚	in time 𝑚 ⋅ 2!(#)

(Lichtenstein and Pnueli, 1985)
§ Automata-theoretic construction by Vardi and Wolper, 1986
§ Vardi and Wolper also established this bound as the lower bound in m and n

§But how big are these structures (in hardware designs)???

HARDER THAN COMBINATIONAL-CIRCUIT SAT

So, how hard is model checking in the size of the Verilog programs (not structure)?

Adnan Aziz, V. Singhal, Robert Brayton, 1993

In this report we carry out a computational complexity analysis of a simple model of
concurrency consisting of interacting finite state machines with fairness constraints (IFSMs).
This model is based on specification languages used for system specification by actual formal
verification tools, and it allows compact representation of complex systems. We prove that
given a property (expressed as a formula in the logic CTL), deciding if it holds of a system of
IFSMs is PSPACE-complete.

§ Lemma 7: It is PSPACE-complete to decide reachability.

SIMPLE LOAD-STORE UNIT (SLSU)

Instruction
Interface

Tag Allocator
(TAB)

Load
Queue

Store
Queue

Response
Buffer

Cache
Interface

Hazard &
Forwarding

instr

load
result

mem
read/
write

§Decodes read (load), write (store),
fence and flush ops

§ Contains Load and Store queues to
track pending ops

§Uses hazard and forwarding logic
to optimize latency

§ TAB issues unique 8-bit tag to each
request going to downstream
memory

§ Returning data from memory is
matched by tag in response buffer

§ Actual design can be more
complex
§ Alignment logic
§ Byte-enable optimization
§ Exceptions
§ Speculative reads
§ …

FV TESTBENCH

Design Under Test
(DUT)

Constraints

Checkers
(Reference

Models)

Coverage
(Code and
Functional)

Abstraction Models

Design Under Test
(DUT)

FV TESTPLAN FOR SLSU

• Flow control
• Core must not send ops if it does not have any credits (constraint)
• After an op is processed, credits must be eventually sent back to core
• Do not send more credits than what the core credit counter can handle
• Memory request must be held until memory is not busy

• AXI protocol
• LSU obeys downstream protocol rules (e.g. number of write bursts cannot exceed 256)

• Ordering and memory model
• Younger stores must never appear before older store
• All ops after a fence must appear after younger ops

• Data Correctness
• Every load must return value seen by an architecturally perfect memory
• Store data sent to memory must match the in-order architectural store data

• Tag uniqueness
• No two outstanding memory requests share the same tag
• Every memory response tag must match an outstanding tag (constraint)

END-TO-END CHECKERS

• ~95% of End-to-End Checker is in SV; rest is SVA
• Developing reference model could take as much time as writing RTL

SLSU RTL

A X I 4 i/f

Core i/f
FV Checker

FSM

FIFO

Counters

FV Reference Model

SVA Assertions

op st_data busy ld_datald_vld

DEEP PROOF DEPTHS MAY NOT BE ACHIEVABLE

R

1

1

1

1
2

2

2

22

2

2

2

2

2

2

2

8191

8191

255. . .

. . .

. .
 .

N

Proof Depth

Interesting
Corner-cases?

REQUIRED PROOF DEPTH

§Premise
§ A proof depth that gives us the “coverage” that “we need”

§ Similar to simulation sign-off
§ Commercial FV tools can assist in measuring coverage on code (line coverage, expression coverage)

§ A proof depth that will not miss any RTL bug
§ Bounded proof is as good as full proof, enabling formal sign-off

DETERMINING REQUIRED PROOF DEPTH

§Based on
§Latency analysis of design
§Micro-architectural analysis (with, and without designer)
§Covers for “interesting” corner cases
§Failures seen in bounded model checking
§Formal coverage
§Safety nets

§Missed bugs found in simulation
§Missed bugs found by bugg hunting FV engines
§Negative testing/mutation coverage

§An abstraction results in a superset of the design behavior
§Reduces state space
§Adds state transitions
§Adds Reset states

ABSTRACTION ENGINEERING

R

1

1

1

1
2

2

2

22

2

2

2

2

2

2

2

8191

8191

255. . .

. . .

. .
 .

Interesting
Corner-cases?

Short-cuts due to
Abstraction Models

FV COMPLEXITY SOURCE 1: DEEP STATES

§Long (Input-to-Output) latency of the design
§ Common in pipelined designs

§Design structures
§ FIFO depth: a deeper FIFO takes more cycles to cover all states, e.g., the FIFO full to

empty scenario will take longer number of cycles

§ Counter: an 𝑛-bit counter will take 2# − 1 cycles to reach its maximum value
§ Large counters will take more cycles to reach its maximum value

§ Linked list: takes 𝑛 cycles to empty a linked list of 𝑛	elements

FV COMPLEXITY SOURCE 2: LARGE COI

Number of combinational gates in the Cone-of-
Influence (COI) of the flops

Checker

The larger the COI, the harder each step of the state search

Irrelevant
Logic

Cone of
Influence

WHY WE NEED ABSTRACTIONS

§ To make sure all corner cases
covered

§ Abstractions can help
1. In decreasing the depth of the

corner cases which are not
reachable otherwise

2. In achieving deeper depths in same
time

R

1

1

1

1
2

2

2

22

2

2

2

2

2

2

2

8191

8191

255. . .

. . .

. .
 .

N

Interesting
Corner-
cases?

BENEFITS OF ABSTRACTIONS

Design size

Without Abstractions

With Abstractions

Realistic deign sizes

R
un

ti
m

e
Reduces runtime because of reduction in
• COI
• required proof depth

PROCESS OF BUILDING AND USING ABSTRACTIONS

§Need to analyze DUT to understand where formal complexity comes from

§ Choose a boundary where we can understand behavior of boundary

§ Craft design-specific AMs to overcome complexity
§ Create properties to represent abstraction
§ Cut-point RTL at the boundary
§ Use properties as constraints

§Goals of an AM
§ Should be effective at reducing complexity

§ Should be coarse enough
§ Should not give false failures

§ Should be fine enough

DUT

SUB

AM
(SUB)

ITERATION FLOW DIAGRAM

Build
Abstraction

Model
Refinement

Real bug
Achieved
Required

Proof Depth

Run checker
using

Abstraction
Model

Debug

Counterexample

False

TrueNo counterexample

Done

Coarsification

No

Yes

USING & PROVING CORRECTNESS OF ABSTRACTIONS

§ Using
§ Add cut-points
§ Bind Abstraction Model to design
§ Assume properties (use as constraints)

§ Proving
§ Prove previously assumed properties

DUT

SUB

Abs.
(SUB)

SUB

Abs.
(SUB)

Small model, so deep proof
depth is reachable!

CUT-POINT ABSTRACTION MODEL (THE
SIMPLEST ONE)

CUT-POINT ABSTRACTION

§ Adds a cut-point on some signal

§ Signal is free (FV can freely choose any value of that signal)
§ A superset of the design behavior without cut-points

§ Logic that was driving the signal (and not used elsewhere) is not used during formal analysis
§ Reduces COI
§ Also, can reduce state-space

§ In a cut-point abstraction, there are no additional constraints
§ No need to do the step to prove abstraction

without cut-point with cut-point

Free wire

CUT-POINT ABSTRACTION – EXAMPLE

§ Adding a cut-point abstraction on r allows it to take any value on any cycle
§ E.g. r could be 0 even if both p and q are 1

§Has to be done judiciously
§ Too many false failures will require refinements

a
st[0]

st[1]

bp
q

r

SIMPLE LOAD-STORE UNIT (LSU)

Instruction
Interface

Tag Allocator
(TAB)

Load
Queue

Store
Queue

Response
Buffer

Cache
Interface

Hazard &
Forwarding

instr

load
result

mem
read/
write

§Decodes read (load), write (store),
fence and flush ops

§ Contains Load and Store queues to
track pending ops

§Uses hazard and forwarding logic
to optimize latency

§ TAB issues unique 8-bit tag to each
request going to downstream
memory

§ Returning data from memory is
matched by tag in response buffer

§ Actual design can be more
complex
§ Alignment logic
§ Exceptions
§ Speculative reads
§ …

TAG ALLOCATOR BLOCK (TAB)

§Disperses unique tags to every new transaction that comes in
§ 2 requesters for 256 tags with 1 grant in next cycle
§ TAB stores the tags in a large linked list of size 256
§ 2 tag returns in single cycle; LSU can refresh all tags or remove a tag

Tag linked list (TLL)

33 79 12 9 …

request_0

request_7

return_tag_0

return_tag_7

grant/tag_out0

grant/tag_out7

refresh_all

lsu_rm_tag

empty

TAB

TAB ABSTRACTION

§Due to large size of linked list, proving SLDU end-to-end properties of
SLSU is harder
§Requires 256 cycles to reach the scenario of empty linked list

§To solve this complexity problem, we need Abstraction Model of TAB
§Mark one of the 256 tag values as special, e.g. value 79
§Abstraction Model of TAB based on two states

§H: TAB Has special tag
§D: TAB Doesn’t have special tag

0 1 2 3 256…TLL at reset: 256 cycles to
cover (empty = 1)!

TAB ABSTRACTION

Properties on TAB outputs (PTAB) used as constraints when TAB is
replaced by its abstraction
1. request |-> ##1 (empty || grant)
2. (state == H) |-> (!empty)
3. ((state == D) && (grant)) |-> (grant_tag != 79)

Properties on TAB inputs (PSYS) used as checkers when TAB is
replaced by its abstraction
1. ((state == H) && return) |-> (return_tag != 79)
2. (state == D) |-> “tag 79 is eventually returned”

H D(!grant) ||
(grant_tag != 79)

grant && (grant_tag == 79)

return && (return_tag == 79)

(!return) ||
(return_tag != 79)

TAB ABSTRACTION

§Advantages
§ Reduces COI of the checker, and therefore reduces state-space
§ Reduces required proof-depth for the checker

§Proving Tag Allocator AM against TAB RTL
§ Reverse the usage of properties on TAB outputs and inputs, i.e.

§ Properties on TAB outputs (PTAB) used as checkers and properties on TAB inputs (PSYS) used as constraints

§ Can be sequentially long, but on a tiny DUT

QUESTIONS?

AGENDA

Tribute to Bob Brayton

Chip design process

Important of verification in chip design
Logic circuits in chip design

History of FV tools
FV methodology

Required Proof Depths
Abstraction

TRANSISTOR COUNTS AND PIVOT TO PARALLELISM

THE TEMPORAL LOGIC OF PROGRAMS

Amir Pnueli, 1977 (> 7,500 citations)

A unified approach to program verification is suggested, which
applies to both sequential and parallel programs. The main proof
method suggested is that of temporal reasoning in which the time
dependence of events is the basic concept. Two formal systems are
presented. One forms a formalization of the method of intermittent
assertions, while the other is an adaptation of the tense logic system
Kb and is particularly suitable for reasoning about concurrent
programs.

§ Turing Award 1996 citation:

§ For seminal work introducing temporal logic into computing science and for outstanding
contributions to program and system verification.

(Slide from Moshe)

AUTOMATIC VERIFICATION OF FINITE-STATE CONCURRENT SYSTEMS

Ed Clarke, Allen Emerson, 1981, JP Queille, Joseph Sifakis, 1982
(> 7,700 citations)

We give an efficient procedure for verifying that a finite-state
concurrent system meets a specification expressed in a branching-
time temporal logic. We argue that this technique can provide a
practical alternative to manual proof construction or use of a
mechanical theorem prover for verifying many finite-state
concurrent systems.

§ Turing Award 2007 citation:

§ For their role in developing Model Checking into a highly effective verification technology that is
widely adopted in the hardware and software industries.

(Slide from Moshe)

AN AUTOMATA-THEORETIC APPROACH TO AUTOMATIC PROGRAM VERIFICATION

Moshe Vardi, Pierre Wolper*, 1986 (> 2,300 citations)

We describe an automata-theoretic approach to the automatic
verification of concurrent finite-state programs by model checking.
The basic idea underlying this approach is that for any temporal
formula we can construct an automaton that accepts precisely the
computations that satisfy the formula. The model-checking
algorithm that results from this approach is much simpler and
cleaner than tableau-based algorithms. We use this approach to
extend model checking to probabilistic concurrent finite-state
programs. concurrent finite-state programs.

§Gödel Prize 2000 citation:
§ This paper is a reworking and extension of a conference contribution of FOCS'83, which has become a

major reference in the automata-theoretic approach to temporal logic.

* Expressing interest properties of programs in propositional temporal logic.
 Wolper. (> 400 citations)

GRAPH ALGORITHMS FOR BOOLEAN FUNCTION MANIPULATION (BDD’S)

Randy Bryant, 1986 (> 12,000 citations)

§ Phil Kaufman Award 2009 citation:
§ Dr. Bryant received this award for his seminal technological breakthroughs in the area of formal

verification. Dr. Bryant’s research focuses on methods for formally verifying digital hardware and some
forms of software. Notably, he developed efficient algorithms based on ordered binary decision diagrams
(OBDDs) to manipulate the logic functions that form the basis for computer designs. His work
revolutionized the field, enabling reasoning about large-scale circuit designs for the first time.

a
b

c
out

a

b

c

0 1

out

SYMBOLIC MODEL CHECKING (THE SMV SYSTEM, CA. 1987)

Ken McMillan, 1993 PhD thesis (> 6,000 citations)

Finite state models of concurrent systems grow exponentially as the
number of components of the system increases. This is known widely as
the state explosion problem in automatic verification and has limited
finite state verification methods to small systems. To avoid this problem,
a method called symbolic model checking is proposed and studied. This
method avoids building a state graph by using Boolean formulas to
represent sets and relations. A variety of properties characterized by
least and greatest fixed points can be verified purely by manipulations of
these formulas using Ordered BDDs.

§ LICS Test of Time Award 2010 citation (1990 paper by Burch/Clarke/McMillan/Dill/Hwang)
§ This paper revolutionized model checking. Through its symbolic representation of the state space using

Randy Bryant's BDDs and its careful analysis of several forms of model checking problems, backed up by
empirical results, it provided a first convincing attack on the verification of large-state systems.

SYMBOLIC MODEL CHECKING WITHOUT BDD’S (BMC)

A. Biere, A. Cimatti, E. Clarke, Y. Zhu, 1999 (> 3,200 citations)

Symbolic Model Checking has proven to be a powerful technique for
the verification of reactive systems. BDDs have traditionally been
used as a symbolic representation of the system. In this paper we
show how boolean decision procedures, like Stålmarck’s Method or
the Davis & Putnam Procedure, can replace BDDs. This new
technique avoids the space blow up of BDDs, generates
counterexamples much faster, and sometimes speeds up the
verification. In addition, it produces counterexamples of minimal
length.

§ CAV 2018 citation (along with Kroening and Lerda)
§ For their outstanding contribution to the enhancement and scalability of model checking by

introducing Bounded Model Checking based on Boolean Satisfiability (SAT) for hardware (BMC) and
software (CBMC).

